gartajackhats1985's picture
Upload 1633 files
681fa96 verified
raw
history blame
16 kB
# MIT licensed code from https://github.com/li-plus/seam-carving/
from enum import Enum
from typing import Optional, Tuple
import numba as nb
import numpy as np
from scipy.ndimage import sobel
DROP_MASK_ENERGY = 1e5
KEEP_MASK_ENERGY = 1e3
class OrderMode(str, Enum):
WIDTH_FIRST = "width-first"
HEIGHT_FIRST = "height-first"
class EnergyMode(str, Enum):
FORWARD = "forward"
BACKWARD = "backward"
def _list_enum(enum_class) -> Tuple:
return tuple(x.value for x in enum_class)
def _rgb2gray(rgb: np.ndarray) -> np.ndarray:
"""Convert an RGB image to a grayscale image"""
coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=np.float32)
return (rgb @ coeffs).astype(rgb.dtype)
def _get_seam_mask(src: np.ndarray, seam: np.ndarray) -> np.ndarray:
"""Convert a list of seam column indices to a mask"""
return np.eye(src.shape[1], dtype=bool)[seam]
def _remove_seam_mask(src: np.ndarray, seam_mask: np.ndarray) -> np.ndarray:
"""Remove a seam from the source image according to the given seam_mask"""
if src.ndim == 3:
h, w, c = src.shape
seam_mask = np.broadcast_to(seam_mask[:, :, None], src.shape)
dst = src[~seam_mask].reshape((h, w - 1, c))
else:
h, w = src.shape
dst = src[~seam_mask].reshape((h, w - 1))
return dst
def _get_energy(gray: np.ndarray) -> np.ndarray:
"""Get backward energy map from the source image"""
assert gray.ndim == 2
gray = gray.astype(np.float32)
grad_x = sobel(gray, axis=1)
grad_y = sobel(gray, axis=0)
energy = np.abs(grad_x) + np.abs(grad_y)
return energy
@nb.njit(nb.int32[:](nb.float32[:, :]), cache=True)
def _get_backward_seam(energy: np.ndarray) -> np.ndarray:
"""Compute the minimum vertical seam from the backward energy map"""
h, w = energy.shape
inf = np.array([np.inf], dtype=np.float32)
cost = np.concatenate((inf, energy[0], inf))
parent = np.empty((h, w), dtype=np.int32)
base_idx = np.arange(-1, w - 1, dtype=np.int32)
for r in range(1, h):
choices = np.vstack((cost[:-2], cost[1:-1], cost[2:]))
min_idx = np.argmin(choices, axis=0) + base_idx
parent[r] = min_idx
cost[1:-1] = cost[1:-1][min_idx] + energy[r]
c = np.argmin(cost[1:-1])
seam = np.empty(h, dtype=np.int32)
for r in range(h - 1, -1, -1):
seam[r] = c
c = parent[r, c]
return seam
def _get_backward_seams(
gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
"""Compute the minimum N vertical seams using backward energy"""
h, w = gray.shape
seams = np.zeros((h, w), dtype=bool)
rows = np.arange(h, dtype=np.int32)
idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
energy = _get_energy(gray)
if aux_energy is not None:
energy += aux_energy
for _ in range(num_seams):
seam = _get_backward_seam(energy)
seams[rows, idx_map[rows, seam]] = True
seam_mask = _get_seam_mask(gray, seam)
gray = _remove_seam_mask(gray, seam_mask)
idx_map = _remove_seam_mask(idx_map, seam_mask)
if aux_energy is not None:
aux_energy = _remove_seam_mask(aux_energy, seam_mask)
# Only need to re-compute the energy in the bounding box of the seam
_, cur_w = energy.shape
lo = max(0, np.min(seam) - 1)
hi = min(cur_w, np.max(seam) + 1)
pad_lo = 1 if lo > 0 else 0
pad_hi = 1 if hi < cur_w - 1 else 0
mid_block = gray[:, lo - pad_lo : hi + pad_hi]
_, mid_w = mid_block.shape
mid_energy = _get_energy(mid_block)[:, pad_lo : mid_w - pad_hi]
if aux_energy is not None:
mid_energy += aux_energy[:, lo:hi]
energy = np.hstack((energy[:, :lo], mid_energy, energy[:, hi + 1 :]))
return seams
@nb.njit(
[
nb.int32[:](nb.float32[:, :], nb.none),
nb.int32[:](nb.float32[:, :], nb.float32[:, :]),
],
cache=True,
)
def _get_forward_seam(gray: np.ndarray, aux_energy: Optional[np.ndarray]) -> np.ndarray:
"""Compute the minimum vertical seam using forward energy"""
h, w = gray.shape
gray = np.hstack((gray[:, :1], gray, gray[:, -1:]))
inf = np.array([np.inf], dtype=np.float32)
dp = np.concatenate((inf, np.abs(gray[0, 2:] - gray[0, :-2]), inf))
parent = np.empty((h, w), dtype=np.int32)
base_idx = np.arange(-1, w - 1, dtype=np.int32)
inf = np.array([np.inf], dtype=np.float32)
for r in range(1, h):
curr_shl = gray[r, 2:]
curr_shr = gray[r, :-2]
cost_mid = np.abs(curr_shl - curr_shr)
if aux_energy is not None:
cost_mid += aux_energy[r]
prev_mid = gray[r - 1, 1:-1]
cost_left = cost_mid + np.abs(prev_mid - curr_shr)
cost_right = cost_mid + np.abs(prev_mid - curr_shl)
dp_mid = dp[1:-1]
dp_left = dp[:-2]
dp_right = dp[2:]
choices = np.vstack(
(cost_left + dp_left, cost_mid + dp_mid, cost_right + dp_right)
)
min_idx = np.argmin(choices, axis=0)
parent[r] = min_idx + base_idx
# numba does not support specifying axis in np.min, below loop is equivalent to:
# `dp_mid[:] = np.min(choices, axis=0)` or `dp_mid[:] = choices[min_idx, np.arange(w)]`
for j, i in enumerate(min_idx):
dp_mid[j] = choices[i, j]
c = np.argmin(dp[1:-1])
seam = np.empty(h, dtype=np.int32)
for r in range(h - 1, -1, -1):
seam[r] = c
c = parent[r, c]
return seam
def _get_forward_seams(
gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
"""Compute minimum N vertical seams using forward energy"""
h, w = gray.shape
seams = np.zeros((h, w), dtype=bool)
rows = np.arange(h, dtype=np.int32)
idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
for _ in range(num_seams):
seam = _get_forward_seam(gray, aux_energy)
seams[rows, idx_map[rows, seam]] = True
seam_mask = _get_seam_mask(gray, seam)
gray = _remove_seam_mask(gray, seam_mask)
idx_map = _remove_seam_mask(idx_map, seam_mask)
if aux_energy is not None:
aux_energy = _remove_seam_mask(aux_energy, seam_mask)
return seams
def _get_seams(
gray: np.ndarray, num_seams: int, energy_mode: str, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
"""Get the minimum N seams from the grayscale image"""
gray = np.asarray(gray, dtype=np.float32)
if energy_mode == EnergyMode.BACKWARD:
return _get_backward_seams(gray, num_seams, aux_energy)
elif energy_mode == EnergyMode.FORWARD:
return _get_forward_seams(gray, num_seams, aux_energy)
else:
raise ValueError(
f"expect energy_mode to be one of {_list_enum(EnergyMode)}, got {energy_mode}"
)
def _reduce_width(
src: np.ndarray,
delta_width: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Reduce the width of image by delta_width pixels"""
assert src.ndim in (2, 3) and delta_width >= 0
if src.ndim == 2:
gray = src
src_h, src_w = src.shape
dst_shape: Tuple[int, ...] = (src_h, src_w - delta_width)
else:
gray = _rgb2gray(src)
src_h, src_w, src_c = src.shape
dst_shape = (src_h, src_w - delta_width, src_c)
to_keep = ~_get_seams(gray, delta_width, energy_mode, aux_energy)
dst = src[to_keep].reshape(dst_shape)
if aux_energy is not None:
aux_energy = aux_energy[to_keep].reshape(dst_shape[:2])
return dst, aux_energy
@nb.njit(
nb.float32[:, :, :](nb.float32[:, :, :], nb.boolean[:, :], nb.int32), cache=True
)
def _insert_seams_kernel(
src: np.ndarray, seams: np.ndarray, delta_width: int
) -> np.ndarray:
"""The numba kernel for inserting seams"""
src_h, src_w, src_c = src.shape
dst = np.empty((src_h, src_w + delta_width, src_c), dtype=src.dtype)
for row in range(src_h):
dst_col = 0
for src_col in range(src_w):
if seams[row, src_col]:
left = src[row, max(src_col - 1, 0)]
right = src[row, src_col]
dst[row, dst_col] = (left + right) / 2
dst_col += 1
dst[row, dst_col] = src[row, src_col]
dst_col += 1
return dst
def _insert_seams(src: np.ndarray, seams: np.ndarray, delta_width: int) -> np.ndarray:
"""Insert multiple seams into the source image"""
dst = src.astype(np.float32)
if dst.ndim == 2:
dst = dst[:, :, None]
dst = _insert_seams_kernel(dst, seams, delta_width).astype(src.dtype)
if src.ndim == 2:
dst = dst.squeeze(-1)
return dst
def _expand_width(
src: np.ndarray,
delta_width: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Expand the width of image by delta_width pixels"""
assert src.ndim in (2, 3) and delta_width >= 0
if not 0 < step_ratio <= 1:
raise ValueError(f"expect `step_ratio` to be between (0,1], got {step_ratio}")
dst = src
while delta_width > 0:
max_step_size = max(1, round(step_ratio * dst.shape[1]))
step_size = min(max_step_size, delta_width)
gray = dst if dst.ndim == 2 else _rgb2gray(dst)
seams = _get_seams(gray, step_size, energy_mode, aux_energy)
dst = _insert_seams(dst, seams, step_size)
if aux_energy is not None:
aux_energy = _insert_seams(aux_energy, seams, step_size)
delta_width -= step_size
return dst, aux_energy
def _resize_width(
src: np.ndarray,
width: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Resize the width of image by removing vertical seams"""
assert src.size > 0 and src.ndim in (2, 3)
assert width > 0
src_w = src.shape[1]
if src_w < width:
dst, aux_energy = _expand_width(
src, width - src_w, energy_mode, aux_energy, step_ratio
)
else:
dst, aux_energy = _reduce_width(src, src_w - width, energy_mode, aux_energy)
return dst, aux_energy
def _transpose_image(src: np.ndarray) -> np.ndarray:
"""Transpose a source image in rgb or grayscale format"""
if src.ndim == 3:
dst = src.transpose((1, 0, 2))
else:
dst = src.T
return dst
def _resize_height(
src: np.ndarray,
height: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Resize the height of image by removing horizontal seams"""
assert src.ndim in (2, 3) and height > 0
if aux_energy is not None:
aux_energy = aux_energy.T
src = _transpose_image(src)
src, aux_energy = _resize_width(src, height, energy_mode, aux_energy, step_ratio)
src = _transpose_image(src)
if aux_energy is not None:
aux_energy = aux_energy.T
return src, aux_energy
def _check_mask(mask: np.ndarray, shape: Tuple[int, ...]) -> np.ndarray:
"""Ensure the mask to be a 2D grayscale map of specific shape"""
mask = np.asarray(mask, dtype=bool)
if mask.ndim != 2:
raise ValueError(f"expect mask to be a 2d binary map, got shape {mask.shape}")
if mask.shape != shape:
raise ValueError(
f"expect the shape of mask to match the image, got {mask.shape} vs {shape}"
)
return mask
def _check_src(src: np.ndarray) -> np.ndarray:
"""Ensure the source to be RGB or grayscale"""
src = np.asarray(src)
if src.size == 0 or src.ndim not in (2, 3):
raise ValueError(
f"expect a 3d rgb image or a 2d grayscale image, got image in shape {src.shape}"
)
return src
def seam_carving(
src: np.ndarray,
size: Optional[Tuple[int, int]] = None,
energy_mode: str = "backward",
order: str = "width-first",
keep_mask: Optional[np.ndarray] = None,
drop_mask: Optional[np.ndarray] = None,
step_ratio: float = 0.5,
) -> np.ndarray:
"""Resize the image using the content-aware seam-carving algorithm.
:param src: A source image in RGB or grayscale format.
:param size: The target size in pixels, as a 2-tuple (width, height).
:param energy_mode: Policy to compute energy for the source image. Could be
one of ``backward`` or ``forward``. If ``backward``, compute the energy
as the gradient at each pixel. If ``forward``, compute the energy as the
distances between adjacent pixels after each pixel is removed.
:param order: The order to remove horizontal and vertical seams. Could be
one of ``width-first`` or ``height-first``. In ``width-first`` mode, we
remove or insert all vertical seams first, then the horizontal ones,
while ``height-first`` is the opposite.
:param keep_mask: An optional mask where the foreground is protected from
seam removal. If not specified, no area will be protected.
:param drop_mask: An optional binary object mask to remove. If given, the
object will be removed before resizing the image to the target size.
:param step_ratio: The maximum size expansion ratio in one seam carving step.
The image will be expanded in multiple steps if target size is too large.
:return: A resized copy of the source image.
"""
src = _check_src(src)
if order not in _list_enum(OrderMode):
raise ValueError(
f"expect order to be one of {_list_enum(OrderMode)}, got {order}"
)
aux_energy = None
if keep_mask is not None:
keep_mask = _check_mask(keep_mask, src.shape[:2])
aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
aux_energy[keep_mask] += KEEP_MASK_ENERGY
# remove object if `drop_mask` is given
if drop_mask is not None:
drop_mask = _check_mask(drop_mask, src.shape[:2])
if aux_energy is None:
aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
aux_energy[drop_mask] -= DROP_MASK_ENERGY
if order == OrderMode.HEIGHT_FIRST:
src = _transpose_image(src)
aux_energy = aux_energy.T
num_seams = (aux_energy < 0).sum(1).max()
while num_seams > 0:
src, aux_energy = _reduce_width(src, num_seams, energy_mode, aux_energy)
num_seams = (aux_energy < 0).sum(1).max()
if order == OrderMode.HEIGHT_FIRST:
src = _transpose_image(src)
aux_energy = aux_energy.T
# resize image if `size` is given
if size is not None:
width, height = size
width = round(width)
height = round(height)
if width <= 0 or height <= 0:
raise ValueError(f"expect target size to be positive, got {size}")
if order == OrderMode.WIDTH_FIRST:
src, aux_energy = _resize_width(
src, width, energy_mode, aux_energy, step_ratio
)
src, aux_energy = _resize_height(
src, height, energy_mode, aux_energy, step_ratio
)
else:
src, aux_energy = _resize_height(
src, height, energy_mode, aux_energy, step_ratio
)
src, aux_energy = _resize_width(
src, width, energy_mode, aux_energy, step_ratio
)
return src