Spaces:
Running
Running
from typing import Callable, Union | |
from torch import Tensor | |
import torch | |
import os | |
import comfy.ops | |
import comfy.utils | |
import comfy.model_management | |
import comfy.model_detection | |
import comfy.controlnet as comfy_cn | |
from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, StrengthType | |
from comfy.model_patcher import ModelPatcher | |
from .control_sparsectrl import SparseModelPatcher, SparseControlNet, SparseCtrlMotionWrapper, SparseSettings, SparseConst | |
from .control_lllite import LLLiteModule, LLLitePatch, load_controllllite | |
from .control_svd import svd_unet_config_from_diffusers_unet, SVDControlNet, svd_unet_to_diffusers | |
from .utils import (AdvancedControlBase, TimestepKeyframeGroup, LatentKeyframeGroup, AbstractPreprocWrapper, ControlWeightType, ControlWeights, WeightTypeException, | |
manual_cast_clean_groupnorm, disable_weight_init_clean_groupnorm, prepare_mask_batch, get_properly_arranged_t2i_weights, load_torch_file_with_dict_factory, | |
broadcast_image_to_extend, extend_to_batch_size, ORIG_PREVIOUS_CONTROLNET, CONTROL_INIT_BY_ACN) | |
from .logger import logger | |
class ControlNetAdvanced(ControlNet, AdvancedControlBase): | |
def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT): | |
super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, compression_ratio=compression_ratio, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet()) | |
self.is_flux = False | |
self.x_noisy_shape = None | |
def get_universal_weights(self) -> ControlWeights: | |
def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str): | |
if key == "middle": | |
return 1.0 | |
c_len = len(control[key]) | |
raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)] | |
raw_weights = raw_weights[:-1] | |
if key == "input": | |
raw_weights.reverse() | |
return raw_weights[idx] | |
return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func) | |
def get_control_advanced(self, x_noisy, t, cond, batched_number): | |
# perform special version of get_control that supports sliding context and masks | |
return self.sliding_get_control(x_noisy, t, cond, batched_number) | |
def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number): | |
control_prev = None | |
if self.previous_controlnet is not None: | |
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) | |
if self.timestep_range is not None: | |
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: | |
if control_prev is not None: | |
return control_prev | |
else: | |
return None | |
dtype = self.control_model.dtype | |
if self.manual_cast_dtype is not None: | |
dtype = self.manual_cast_dtype | |
# make cond_hint appropriate dimensions | |
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present | |
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]: | |
if self.cond_hint is not None: | |
del self.cond_hint | |
self.cond_hint = None | |
compression_ratio = self.compression_ratio | |
if self.vae is not None: | |
compression_ratio *= self.vae.downscale_ratio | |
# if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling | |
if self.sub_idxs is not None: | |
actual_cond_hint_orig = self.cond_hint_original | |
if self.cond_hint_original.size(0) < self.full_latent_length: | |
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length) | |
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center") | |
else: | |
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center") | |
if self.vae is not None: | |
loaded_models = comfy.model_management.loaded_models(only_currently_used=True) | |
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1)) | |
comfy.model_management.load_models_gpu(loaded_models) | |
if self.latent_format is not None: | |
self.cond_hint = self.latent_format.process_in(self.cond_hint) | |
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype) | |
if x_noisy.shape[0] != self.cond_hint.shape[0]: | |
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number) | |
# prepare mask_cond_hint | |
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) | |
context = cond.get('crossattn_controlnet', cond['c_crossattn']) | |
extra = self.extra_args.copy() | |
for c in self.extra_conds: | |
temp = cond.get(c, None) | |
if temp is not None: | |
extra[c] = temp.to(dtype) | |
timestep = self.model_sampling_current.timestep(t) | |
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) | |
self.x_noisy_shape = x_noisy.shape | |
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra) | |
return self.control_merge(control, control_prev, output_dtype=None) | |
def pre_run_advanced(self, *args, **kwargs): | |
self.is_flux = "Flux" in str(type(self.control_model).__name__) | |
return super().pre_run_advanced(*args, **kwargs) | |
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape=None): | |
if self.is_flux: | |
flux_shape = self.x_noisy_shape | |
return super().apply_advanced_strengths_and_masks(x, batched_number, flux_shape) | |
def copy(self): | |
c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) | |
c.control_model = self.control_model | |
c.control_model_wrapped = self.control_model_wrapped | |
self.copy_to(c) | |
self.copy_to_advanced(c) | |
return c | |
def cleanup_advanced(self): | |
self.x_noisy_shape = None | |
return super().cleanup_advanced() | |
def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced': | |
to_return = ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe, | |
global_average_pooling=v.global_average_pooling, compression_ratio=v.compression_ratio, latent_format=v.latent_format, load_device=v.load_device, | |
manual_cast_dtype=v.manual_cast_dtype) | |
v.copy_to(to_return) | |
return to_return | |
class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase): | |
def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, compression_ratio=8, upscale_algorithm="nearest_exact", device=None): | |
super().__init__(t2i_model=t2i_model, channels_in=channels_in, compression_ratio=compression_ratio, upscale_algorithm=upscale_algorithm, device=device) | |
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter()) | |
def control_merge_inject(self, control: dict[str, list[Tensor]], control_prev, output_dtype): | |
# match batch_size | |
# TODO: make this more efficient by modifying the cached self.control_input val instead of doing this every step | |
for key in control: | |
control_current = control[key] | |
for i in range(len(control_current)): | |
x = control_current[i] | |
if x is not None and x.size(0) == 1 and x.size(0) != self.batch_size: | |
control_current[i] = x.repeat(self.batch_size, 1, 1, 1)[:self.batch_size] | |
return AdvancedControlBase.control_merge_inject(self, control, control_prev, output_dtype) | |
def get_universal_weights(self) -> ControlWeights: | |
def t2i_weights_func(idx: int, control: dict[str, list[Tensor]], key: str): | |
if key == "middle": | |
return 1.0 | |
c_len = 8 #len(control[key]) | |
raw_weights = [(self.weights.base_multiplier ** float((c_len-1) - i)) for i in range(c_len)] | |
raw_weights = [raw_weights[-c_len], raw_weights[-3], raw_weights[-2], raw_weights[-1]] | |
raw_weights = get_properly_arranged_t2i_weights(raw_weights) | |
if key == "input": | |
raw_weights.reverse() | |
return raw_weights[idx] | |
return self.weights.copy_with_new_weights(new_weight_func=t2i_weights_func) | |
def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int: | |
if key == "middle": | |
return 0 | |
# match how T2IAdapterAdvanced deals with universal weights | |
c_len = 8 #len(control[key]) | |
indeces = [(c_len-1) - i for i in range(c_len)] | |
indeces = [indeces[-c_len], indeces[-3], indeces[-2], indeces[-1]] | |
indeces = get_properly_arranged_t2i_weights(indeces) | |
if key == "input": | |
indeces.reverse() # need to reverse to match recent ComfyUI changes | |
return indeces[idx] | |
def get_control_advanced(self, x_noisy, t, cond, batched_number): | |
try: | |
# if sub indexes present, replace original hint with subsection | |
if self.sub_idxs is not None: | |
# cond hints | |
full_cond_hint_original = self.cond_hint_original | |
actual_cond_hint_orig = full_cond_hint_original | |
del self.cond_hint | |
self.cond_hint = None | |
if full_cond_hint_original.size(0) < self.full_latent_length: | |
actual_cond_hint_orig = extend_to_batch_size(tensor=full_cond_hint_original, batch_size=full_cond_hint_original.size(0)) | |
self.cond_hint_original = actual_cond_hint_orig[self.sub_idxs] | |
# mask hints | |
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number) | |
return super().get_control(x_noisy, t, cond, batched_number) | |
finally: | |
if self.sub_idxs is not None: | |
# replace original cond hint | |
self.cond_hint_original = full_cond_hint_original | |
del full_cond_hint_original | |
def copy(self): | |
c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in, self.compression_ratio, self.upscale_algorithm) | |
self.copy_to(c) | |
self.copy_to_advanced(c) | |
return c | |
def cleanup(self): | |
super().cleanup() | |
self.cleanup_advanced() | |
def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced': | |
to_return = T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in, | |
compression_ratio=v.compression_ratio, upscale_algorithm=v.upscale_algorithm, device=v.device) | |
v.copy_to(to_return) | |
return to_return | |
class ControlLoraAdvanced(ControlLora, AdvancedControlBase): | |
def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False): | |
super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling) | |
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora()) | |
# use some functions from ControlNetAdvanced | |
self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self)) | |
self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self)) | |
def get_universal_weights(self) -> ControlWeights: | |
raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)] | |
return self.weights.copy_with_new_weights(raw_weights) | |
def copy(self): | |
c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling) | |
self.copy_to(c) | |
self.copy_to_advanced(c) | |
return c | |
def cleanup(self): | |
super().cleanup() | |
self.cleanup_advanced() | |
def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced': | |
to_return = ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe, | |
global_average_pooling=v.global_average_pooling) | |
v.copy_to(to_return) | |
return to_return | |
class SVDControlNetAdvanced(ControlNetAdvanced): | |
def __init__(self, control_model: SVDControlNet, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None): | |
super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
def set_cond_hint_inject(self, *args, **kwargs): | |
to_return = super().set_cond_hint_inject(*args, **kwargs) | |
# cond hint for SVD-ControlNet needs to be scaled between (-1, 1) instead of (0, 1) | |
self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0 | |
return to_return | |
def get_control_advanced(self, x_noisy, t, cond, batched_number): | |
control_prev = None | |
if self.previous_controlnet is not None: | |
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) | |
if self.timestep_range is not None: | |
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: | |
if control_prev is not None: | |
return control_prev | |
else: | |
return None | |
dtype = self.control_model.dtype | |
if self.manual_cast_dtype is not None: | |
dtype = self.manual_cast_dtype | |
output_dtype = x_noisy.dtype | |
# make cond_hint appropriate dimensions | |
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present | |
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: | |
if self.cond_hint is not None: | |
del self.cond_hint | |
self.cond_hint = None | |
# if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling | |
if self.sub_idxs is not None: | |
actual_cond_hint_orig = self.cond_hint_original | |
if self.cond_hint_original.size(0) < self.full_latent_length: | |
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length) | |
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device) | |
else: | |
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device) | |
if x_noisy.shape[0] != self.cond_hint.shape[0]: | |
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number) | |
# prepare mask_cond_hint | |
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) | |
context = cond.get('crossattn_controlnet', cond['c_crossattn']) | |
# uses 'y' in new ComfyUI update | |
y = cond.get('y', None) | |
if y is not None: | |
y = y.to(dtype) | |
timestep = self.model_sampling_current.timestep(t) | |
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) | |
# concat c_concat if exists (should exist for SVD), doubling channels to 8 | |
if cond.get('c_concat', None) is not None: | |
x_noisy = torch.cat([x_noisy] + [cond['c_concat']], dim=1) | |
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, cond=cond) | |
return self.control_merge(control, control_prev, output_dtype) | |
def copy(self): | |
c = SVDControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype) | |
self.copy_to(c) | |
self.copy_to_advanced(c) | |
return c | |
class SparseCtrlAdvanced(ControlNetAdvanced): | |
def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, sparse_settings: SparseSettings=None, global_average_pooling=False, load_device=None, manual_cast_dtype=None): | |
super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
self.control_model_wrapped = SparseModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) | |
self.add_compatible_weight(ControlWeightType.SPARSECTRL) | |
self.control_model: SparseControlNet = self.control_model # does nothing except help with IDE hints | |
if self.control_model.use_simplified_conditioning_embedding: | |
# TODO: allow vae_optional to be used instead of preprocessor | |
#self.require_vae = True | |
self.allow_condhint_latents = True | |
self.sparse_settings = sparse_settings if sparse_settings is not None else SparseSettings.default() | |
self.model_latent_format = None # latent format for active SD model, NOT controlnet | |
self.preprocessed = False | |
def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int): | |
# normal ControlNet stuff | |
control_prev = None | |
if self.previous_controlnet is not None: | |
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) | |
if self.timestep_range is not None: | |
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: | |
if control_prev is not None: | |
return control_prev | |
else: | |
return None | |
dtype = self.control_model.dtype | |
if self.manual_cast_dtype is not None: | |
dtype = self.manual_cast_dtype | |
output_dtype = x_noisy.dtype | |
# set actual input length on motion model | |
actual_length = x_noisy.size(0)//batched_number | |
full_length = actual_length if self.sub_idxs is None else self.full_latent_length | |
self.control_model.set_actual_length(actual_length=actual_length, full_length=full_length) | |
# prepare cond_hint, if needed | |
dim_mult = 1 if self.control_model.use_simplified_conditioning_embedding else 8 | |
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2]*dim_mult != self.cond_hint.shape[2] or x_noisy.shape[3]*dim_mult != self.cond_hint.shape[3]: | |
# clear out cond_hint and conditioning_mask | |
if self.cond_hint is not None: | |
del self.cond_hint | |
self.cond_hint = None | |
# first, figure out which cond idxs are relevant, and where they fit in | |
cond_idxs, hint_order = self.sparse_settings.sparse_method.get_indexes(hint_length=self.cond_hint_original.size(0), full_length=full_length, | |
sub_idxs=self.sub_idxs if self.sparse_settings.is_context_aware() else None) | |
range_idxs = list(range(full_length)) if self.sub_idxs is None else self.sub_idxs | |
hint_idxs = [] # idxs in cond_idxs | |
local_idxs = [] # idx to put in final cond_hint | |
for i,cond_idx in enumerate(cond_idxs): | |
if cond_idx in range_idxs: | |
hint_idxs.append(i) | |
local_idxs.append(range_idxs.index(cond_idx)) | |
# log_string = f"cond_idxs: {cond_idxs}, local_idxs: {local_idxs}, hint_idxs: {hint_idxs}, hint_order: {hint_order}" | |
# if self.sub_idxs is not None: | |
# log_string += f" sub_idxs: {self.sub_idxs[0]}-{self.sub_idxs[-1]}" | |
# logger.warn(log_string) | |
# determine cond/uncond indexes that will get masked | |
self.local_sparse_idxs = [] | |
self.local_sparse_idxs_inverse = list(range(x_noisy.size(0))) | |
for batch_idx in range(batched_number): | |
for i in local_idxs: | |
actual_i = i+(batch_idx*actual_length) | |
self.local_sparse_idxs.append(actual_i) | |
if actual_i in self.local_sparse_idxs_inverse: | |
self.local_sparse_idxs_inverse.remove(actual_i) | |
# sub_cond_hint now contains the hints relevant to current x_noisy | |
if hint_order is None: | |
sub_cond_hint = self.cond_hint_original[hint_idxs].to(dtype).to(x_noisy.device) | |
else: | |
sub_cond_hint = self.cond_hint_original[hint_order][hint_idxs].to(dtype).to(x_noisy.device) | |
# scale cond_hints to match noisy input | |
if self.control_model.use_simplified_conditioning_embedding: | |
# RGB SparseCtrl; the inputs are latents - use bilinear to avoid blocky artifacts | |
sub_cond_hint = self.model_latent_format.process_in(sub_cond_hint) # multiplies by model scale factor | |
sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3], x_noisy.shape[2], "nearest-exact", "center").to(dtype).to(x_noisy.device) | |
else: | |
# other SparseCtrl; inputs are typical images | |
sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device) | |
# prepare cond_hint (b, c, h ,w) | |
cond_shape = list(sub_cond_hint.shape) | |
cond_shape[0] = len(range_idxs) | |
self.cond_hint = torch.zeros(cond_shape).to(dtype).to(x_noisy.device) | |
self.cond_hint[local_idxs] = sub_cond_hint[:] | |
# prepare cond_mask (b, 1, h, w) | |
cond_shape[1] = 1 | |
cond_mask = torch.zeros(cond_shape).to(dtype).to(x_noisy.device) | |
cond_mask[local_idxs] = self.sparse_settings.sparse_mask_mult * self.weights.extras.get(SparseConst.MASK_MULT, 1.0) | |
# combine cond_hint and cond_mask into (b, c+1, h, w) | |
if not self.sparse_settings.merged: | |
self.cond_hint = torch.cat([self.cond_hint, cond_mask], dim=1) | |
del sub_cond_hint | |
del cond_mask | |
# make cond_hint match x_noisy batch | |
if x_noisy.shape[0] != self.cond_hint.shape[0]: | |
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number) | |
# prepare mask_cond_hint | |
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype) | |
context = cond['c_crossattn'] | |
y = cond.get('y', None) | |
if y is not None: | |
y = y.to(dtype) | |
timestep = self.model_sampling_current.timestep(t) | |
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy) | |
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y) | |
return self.control_merge(control, control_prev, output_dtype) | |
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, *args, **kwargs): | |
# apply mults to indexes with and without a direct condhint | |
x[self.local_sparse_idxs] *= self.sparse_settings.sparse_hint_mult * self.weights.extras.get(SparseConst.HINT_MULT, 1.0) | |
x[self.local_sparse_idxs_inverse] *= self.sparse_settings.sparse_nonhint_mult * self.weights.extras.get(SparseConst.NONHINT_MULT, 1.0) | |
return super().apply_advanced_strengths_and_masks(x, batched_number, *args, **kwargs) | |
def pre_run_advanced(self, model, percent_to_timestep_function): | |
super().pre_run_advanced(model, percent_to_timestep_function) | |
if isinstance(self.cond_hint_original, AbstractPreprocWrapper): | |
if not self.control_model.use_simplified_conditioning_embedding: | |
raise ValueError("Any model besides RGB SparseCtrl should NOT have its images go through the RGB SparseCtrl preprocessor.") | |
self.cond_hint_original = self.cond_hint_original.condhint | |
self.model_latent_format = model.latent_format # LatentFormat object, used to process_in latent cond hint | |
if self.control_model.motion_wrapper is not None: | |
self.control_model.motion_wrapper.reset() | |
self.control_model.motion_wrapper.set_strength(self.sparse_settings.motion_strength) | |
self.control_model.motion_wrapper.set_scale_multiplier(self.sparse_settings.motion_scale) | |
def cleanup_advanced(self): | |
super().cleanup_advanced() | |
if self.model_latent_format is not None: | |
del self.model_latent_format | |
self.model_latent_format = None | |
self.local_sparse_idxs = None | |
self.local_sparse_idxs_inverse = None | |
def copy(self): | |
c = SparseCtrlAdvanced(self.control_model, self.timestep_keyframes, self.sparse_settings, self.global_average_pooling, self.load_device, self.manual_cast_dtype) | |
self.copy_to(c) | |
self.copy_to_advanced(c) | |
return c | |
def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None): | |
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) | |
# from pathlib import Path | |
# log_name = ckpt_path.split('\\')[-1] | |
# with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile: | |
# for key, value in controlnet_data.items(): | |
# afile.write(f"{key}:\t{value.shape}\n") | |
control = None | |
# check if a non-vanilla ControlNet | |
controlnet_type = ControlWeightType.DEFAULT | |
has_controlnet_key = False | |
has_motion_modules_key = False | |
has_temporal_res_block_key = False | |
for key in controlnet_data: | |
# LLLite check | |
if "lllite" in key: | |
controlnet_type = ControlWeightType.CONTROLLLLITE | |
break | |
# SparseCtrl check | |
elif "motion_modules" in key: | |
has_motion_modules_key = True | |
elif "controlnet" in key: | |
has_controlnet_key = True | |
# SVD-ControlNet check | |
elif "temporal_res_block" in key: | |
has_temporal_res_block_key = True | |
# ControlNet++ check | |
elif "task_embedding" in key: | |
pass | |
if has_controlnet_key and has_motion_modules_key: | |
controlnet_type = ControlWeightType.SPARSECTRL | |
elif has_controlnet_key and has_temporal_res_block_key: | |
controlnet_type = ControlWeightType.SVD_CONTROLNET | |
if controlnet_type != ControlWeightType.DEFAULT: | |
if controlnet_type == ControlWeightType.CONTROLLLLITE: | |
control = load_controllllite(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe) | |
elif controlnet_type == ControlWeightType.SPARSECTRL: | |
control = load_sparsectrl(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe, model=model) | |
elif controlnet_type == ControlWeightType.SVD_CONTROLNET: | |
control = load_svdcontrolnet(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe) | |
# otherwise, load vanilla ControlNet | |
else: | |
try: | |
# hacky way of getting load_torch_file in load_controlnet to use already-present controlnet_data and not redo loading | |
orig_load_torch_file = comfy.utils.load_torch_file | |
comfy.utils.load_torch_file = load_torch_file_with_dict_factory(controlnet_data, orig_load_torch_file) | |
control = comfy_cn.load_controlnet(ckpt_path, model=model) | |
finally: | |
comfy.utils.load_torch_file = orig_load_torch_file | |
return convert_to_advanced(control, timestep_keyframe=timestep_keyframe) | |
def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None): | |
# if already advanced, leave it be | |
if is_advanced_controlnet(control): | |
return control | |
# if exactly ControlNet returned, transform it into ControlNetAdvanced | |
if type(control) == ControlNet: | |
control = ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) | |
if is_sd3_advanced_controlnet(control): | |
control.require_vae = True | |
return control | |
# if exactly ControlLora returned, transform it into ControlLoraAdvanced | |
elif type(control) == ControlLora: | |
return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) | |
# if T2IAdapter returned, transform it into T2IAdapterAdvanced | |
elif isinstance(control, T2IAdapter): | |
return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe) | |
# otherwise, leave it be - might be something I am not supporting yet | |
return control | |
def convert_all_to_advanced(conds: list[list[dict[str]]]) -> tuple[bool, list]: | |
cache = {} | |
modified = False | |
new_conds = [] | |
for cond in conds: | |
converted_cond = None | |
if cond is not None: | |
need_to_convert = False | |
# first, check if there is even a need to convert | |
for sub_cond in cond: | |
actual_cond = sub_cond[1] | |
if "control" in actual_cond: | |
if not are_all_advanced_controlnet(actual_cond["control"]): | |
need_to_convert = True | |
break | |
if not need_to_convert: | |
converted_cond = cond | |
else: | |
converted_cond = [] | |
for sub_cond in cond: | |
new_sub_cond: list = [] | |
for actual_cond in sub_cond: | |
if not type(actual_cond) == dict: | |
new_sub_cond.append(actual_cond) | |
continue | |
if "control" not in actual_cond: | |
new_sub_cond.append(actual_cond) | |
elif are_all_advanced_controlnet(actual_cond["control"]): | |
new_sub_cond.append(actual_cond) | |
else: | |
actual_cond = actual_cond.copy() | |
actual_cond["control"] = _convert_all_control_to_advanced(actual_cond["control"], cache) | |
new_sub_cond.append(actual_cond) | |
modified = True | |
converted_cond.append(new_sub_cond) | |
new_conds.append(converted_cond) | |
return modified, new_conds | |
def _convert_all_control_to_advanced(input_object: ControlBase, cache: dict): | |
output_object = input_object | |
# iteratively convert to advanced, if needed | |
next_cn = None | |
curr_cn = input_object | |
iter = 0 | |
while curr_cn is not None: | |
if not is_advanced_controlnet(curr_cn): | |
# if already in cache, then conversion was done before, so just link it and exit | |
if curr_cn in cache: | |
new_cn = cache[curr_cn] | |
if next_cn is not None: | |
setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet) | |
next_cn.previous_controlnet = new_cn | |
if iter == 0: # if was top-level controlnet, that's the new output | |
output_object = new_cn | |
break | |
try: | |
# convert to advanced, and assign previous_controlnet (convert doesn't transfer it) | |
new_cn = convert_to_advanced(curr_cn) | |
except Exception as e: | |
raise Exception("Failed to automatically convert a ControlNet to Advanced to support sliding window context.", e) | |
new_cn.previous_controlnet = curr_cn.previous_controlnet | |
if iter == 0: # if was top-level controlnet, that's the new output | |
output_object = new_cn | |
# if next_cn is present, then it needs to be pointed to new_cn | |
if next_cn is not None: | |
setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet) | |
next_cn.previous_controlnet = new_cn | |
# add to cache | |
cache[curr_cn] = new_cn | |
curr_cn = new_cn | |
next_cn = curr_cn | |
curr_cn = curr_cn.previous_controlnet | |
iter += 1 | |
return output_object | |
def restore_all_controlnet_conns(conds: list[list[dict[str]]]): | |
# if a cn has an _orig_previous_controlnet property, restore it and delete | |
for main_cond in conds: | |
if main_cond is not None: | |
for cond in main_cond: | |
if "control" in cond[1]: | |
# if ACN is the one to have initialized it, delete it | |
# TODO: maybe check if someone else did a similar hack, and carefully pluck out our stuff? | |
if CONTROL_INIT_BY_ACN in cond[1]: | |
cond[1].pop("control") | |
cond[1].pop(CONTROL_INIT_BY_ACN) | |
else: | |
_restore_all_controlnet_conns(cond[1]["control"]) | |
def _restore_all_controlnet_conns(input_object: ControlBase): | |
# restore original previous_controlnet if needed | |
curr_cn = input_object | |
while curr_cn is not None: | |
if hasattr(curr_cn, ORIG_PREVIOUS_CONTROLNET): | |
curr_cn.previous_controlnet = getattr(curr_cn, ORIG_PREVIOUS_CONTROLNET) | |
delattr(curr_cn, ORIG_PREVIOUS_CONTROLNET) | |
curr_cn = curr_cn.previous_controlnet | |
def are_all_advanced_controlnet(input_object: ControlBase): | |
# iteratively check if linked controlnets objects are all advanced | |
curr_cn = input_object | |
while curr_cn is not None: | |
if not is_advanced_controlnet(curr_cn): | |
return False | |
curr_cn = curr_cn.previous_controlnet | |
return True | |
def is_advanced_controlnet(input_object): | |
return hasattr(input_object, "sub_idxs") | |
def is_sd3_advanced_controlnet(input_object: ControlNetAdvanced): | |
return type(input_object) == ControlNetAdvanced and input_object.latent_format is not None | |
def load_sparsectrl(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, sparse_settings=SparseSettings.default(), model=None) -> SparseCtrlAdvanced: | |
if controlnet_data is None: | |
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) | |
# first, separate out motion part from normal controlnet part and attempt to load that portion | |
motion_data = {} | |
for key in list(controlnet_data.keys()): | |
if "temporal" in key: | |
motion_data[key] = controlnet_data.pop(key) | |
if len(motion_data) == 0: | |
raise ValueError(f"No motion-related keys in '{ckpt_path}'; not a valid SparseCtrl model!") | |
# now, load as if it was a normal controlnet - mostly copied from comfy load_controlnet function | |
controlnet_config: dict[str] = None | |
is_diffusers = False | |
use_simplified_conditioning_embedding = False | |
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: | |
is_diffusers = True | |
if "controlnet_cond_embedding.weight" in controlnet_data: | |
is_diffusers = True | |
use_simplified_conditioning_embedding = True | |
if is_diffusers: #diffusers format | |
unet_dtype = comfy.model_management.unet_dtype() | |
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype) | |
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) | |
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" | |
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
k_in = "controlnet_down_blocks.{}{}".format(count, s) | |
k_out = "zero_convs.{}.0{}".format(count, s) | |
if k_in not in controlnet_data: | |
loop = False | |
break | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
# normal conditioning embedding | |
if not use_simplified_conditioning_embedding: | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
if count == 0: | |
k_in = "controlnet_cond_embedding.conv_in{}".format(s) | |
else: | |
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) | |
k_out = "input_hint_block.{}{}".format(count * 2, s) | |
if k_in not in controlnet_data: | |
k_in = "controlnet_cond_embedding.conv_out{}".format(s) | |
loop = False | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
# simplified conditioning embedding | |
else: | |
count = 0 | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
k_in = "controlnet_cond_embedding{}".format(s) | |
k_out = "input_hint_block.{}{}".format(count, s) | |
diffusers_keys[k_in] = k_out | |
new_sd = {} | |
for k in diffusers_keys: | |
if k in controlnet_data: | |
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) | |
leftover_keys = controlnet_data.keys() | |
if len(leftover_keys) > 0: | |
logger.info("leftover keys:", leftover_keys) | |
controlnet_data = new_sd | |
pth_key = 'control_model.zero_convs.0.0.weight' | |
pth = False | |
key = 'zero_convs.0.0.weight' | |
if pth_key in controlnet_data: | |
pth = True | |
key = pth_key | |
prefix = "control_model." | |
elif key in controlnet_data: | |
prefix = "" | |
else: | |
raise ValueError("The provided model is not a valid SparseCtrl model! [ErrorCode: HORSERADISH]") | |
if controlnet_config is None: | |
unet_dtype = comfy.model_management.unet_dtype() | |
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config | |
load_device = comfy.model_management.get_torch_device() | |
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) | |
if manual_cast_dtype is not None: | |
controlnet_config["operations"] = manual_cast_clean_groupnorm | |
else: | |
controlnet_config["operations"] = disable_weight_init_clean_groupnorm | |
controlnet_config.pop("out_channels") | |
# get proper hint channels | |
if use_simplified_conditioning_embedding: | |
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] | |
controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding | |
else: | |
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] | |
controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding | |
control_model = SparseControlNet(**controlnet_config) | |
if pth: | |
if 'difference' in controlnet_data: | |
if model is not None: | |
comfy.model_management.load_models_gpu([model]) | |
model_sd = model.model_state_dict() | |
for x in controlnet_data: | |
c_m = "control_model." | |
if x.startswith(c_m): | |
sd_key = "diffusion_model.{}".format(x[len(c_m):]) | |
if sd_key in model_sd: | |
cd = controlnet_data[x] | |
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) | |
else: | |
logger.warning("WARNING: Loaded a diff SparseCtrl without a model. It will very likely not work.") | |
class WeightsLoader(torch.nn.Module): | |
pass | |
w = WeightsLoader() | |
w.control_model = control_model | |
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) | |
else: | |
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) | |
if len(missing) > 0 or len(unexpected) > 0: | |
logger.info(f"SparseCtrl ControlNet: {missing}, {unexpected}") | |
global_average_pooling = False | |
filename = os.path.splitext(ckpt_path)[0] | |
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling | |
global_average_pooling = True | |
# actually load motion portion of model now | |
motion_wrapper: SparseCtrlMotionWrapper = SparseCtrlMotionWrapper(motion_data, ops=controlnet_config.get("operations", None)).to(comfy.model_management.unet_dtype()) | |
missing, unexpected = motion_wrapper.load_state_dict(motion_data) | |
if len(missing) > 0 or len(unexpected) > 0: | |
logger.info(f"SparseCtrlMotionWrapper: {missing}, {unexpected}") | |
# both motion portion and controlnet portions are loaded; bring them together if using motion model | |
if sparse_settings.use_motion: | |
motion_wrapper.inject(control_model) | |
control = SparseCtrlAdvanced(control_model, timestep_keyframes=timestep_keyframe, sparse_settings=sparse_settings, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
return control | |
def load_svdcontrolnet(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, model=None): | |
if controlnet_data is None: | |
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) | |
controlnet_config = None | |
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format | |
unet_dtype = comfy.model_management.unet_dtype() | |
controlnet_config = svd_unet_config_from_diffusers_unet(controlnet_data, unet_dtype) | |
diffusers_keys = svd_unet_to_diffusers(controlnet_config) | |
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" | |
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
k_in = "controlnet_down_blocks.{}{}".format(count, s) | |
k_out = "zero_convs.{}.0{}".format(count, s) | |
if k_in not in controlnet_data: | |
loop = False | |
break | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
count = 0 | |
loop = True | |
while loop: | |
suffix = [".weight", ".bias"] | |
for s in suffix: | |
if count == 0: | |
k_in = "controlnet_cond_embedding.conv_in{}".format(s) | |
else: | |
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) | |
k_out = "input_hint_block.{}{}".format(count * 2, s) | |
if k_in not in controlnet_data: | |
k_in = "controlnet_cond_embedding.conv_out{}".format(s) | |
loop = False | |
diffusers_keys[k_in] = k_out | |
count += 1 | |
new_sd = {} | |
for k in diffusers_keys: | |
if k in controlnet_data: | |
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) | |
leftover_keys = controlnet_data.keys() | |
if len(leftover_keys) > 0: | |
spatial_leftover_keys = [] | |
temporal_leftover_keys = [] | |
other_leftover_keys = [] | |
for key in leftover_keys: | |
if "spatial" in key: | |
spatial_leftover_keys.append(key) | |
elif "temporal" in key: | |
temporal_leftover_keys.append(key) | |
else: | |
other_leftover_keys.append(key) | |
logger.warn(f"spatial_leftover_keys ({len(spatial_leftover_keys)}): {spatial_leftover_keys}") | |
logger.warn(f"temporal_leftover_keys ({len(temporal_leftover_keys)}): {temporal_leftover_keys}") | |
logger.warn(f"other_leftover_keys ({len(other_leftover_keys)}): {other_leftover_keys}") | |
#print("leftover keys:", leftover_keys) | |
controlnet_data = new_sd | |
pth_key = 'control_model.zero_convs.0.0.weight' | |
pth = False | |
key = 'zero_convs.0.0.weight' | |
if pth_key in controlnet_data: | |
pth = True | |
key = pth_key | |
prefix = "control_model." | |
elif key in controlnet_data: | |
prefix = "" | |
else: | |
raise ValueError("The provided model is not a valid SVD-ControlNet model! [ErrorCode: MUSTARD]") | |
if controlnet_config is None: | |
unet_dtype = comfy.model_management.unet_dtype() | |
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config | |
load_device = comfy.model_management.get_torch_device() | |
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device) | |
if manual_cast_dtype is not None: | |
controlnet_config["operations"] = comfy.ops.manual_cast | |
controlnet_config.pop("out_channels") | |
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] | |
control_model = SVDControlNet(**controlnet_config) | |
if pth: | |
if 'difference' in controlnet_data: | |
if model is not None: | |
comfy.model_management.load_models_gpu([model]) | |
model_sd = model.model_state_dict() | |
for x in controlnet_data: | |
c_m = "control_model." | |
if x.startswith(c_m): | |
sd_key = "diffusion_model.{}".format(x[len(c_m):]) | |
if sd_key in model_sd: | |
cd = controlnet_data[x] | |
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) | |
else: | |
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") | |
class WeightsLoader(torch.nn.Module): | |
pass | |
w = WeightsLoader() | |
w.control_model = control_model | |
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) | |
else: | |
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) | |
if len(missing) > 0 or len(unexpected) > 0: | |
logger.info(f"SVD-ControlNet: {missing}, {unexpected}") | |
global_average_pooling = False | |
filename = os.path.splitext(ckpt_path)[0] | |
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling | |
global_average_pooling = True | |
control = SVDControlNetAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype) | |
return control | |