gartajackhats1985's picture
Upload 45 files
028694a verified
raw
history blame
49.5 kB
from typing import Callable, Union
from torch import Tensor
import torch
import os
import comfy.ops
import comfy.utils
import comfy.model_management
import comfy.model_detection
import comfy.controlnet as comfy_cn
from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, StrengthType
from comfy.model_patcher import ModelPatcher
from .control_sparsectrl import SparseModelPatcher, SparseControlNet, SparseCtrlMotionWrapper, SparseSettings, SparseConst
from .control_lllite import LLLiteModule, LLLitePatch, load_controllllite
from .control_svd import svd_unet_config_from_diffusers_unet, SVDControlNet, svd_unet_to_diffusers
from .utils import (AdvancedControlBase, TimestepKeyframeGroup, LatentKeyframeGroup, AbstractPreprocWrapper, ControlWeightType, ControlWeights, WeightTypeException,
manual_cast_clean_groupnorm, disable_weight_init_clean_groupnorm, prepare_mask_batch, get_properly_arranged_t2i_weights, load_torch_file_with_dict_factory,
broadcast_image_to_extend, extend_to_batch_size, ORIG_PREVIOUS_CONTROLNET, CONTROL_INIT_BY_ACN)
from .logger import logger
class ControlNetAdvanced(ControlNet, AdvancedControlBase):
def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT):
super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, compression_ratio=compression_ratio, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
self.is_flux = False
self.x_noisy_shape = None
def get_universal_weights(self) -> ControlWeights:
def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
if key == "middle":
return 1.0
c_len = len(control[key])
raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
raw_weights = raw_weights[:-1]
if key == "input":
raw_weights.reverse()
return raw_weights[idx]
return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)
def get_control_advanced(self, x_noisy, t, cond, batched_number):
# perform special version of get_control that supports sliding context and masks
return self.sliding_get_control(x_noisy, t, cond, batched_number)
def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
# make cond_hint appropriate dimensions
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.downscale_ratio
# if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
if self.sub_idxs is not None:
actual_cond_hint_orig = self.cond_hint_original
if self.cond_hint_original.size(0) < self.full_latent_length:
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
else:
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
comfy.model_management.load_models_gpu(loaded_models)
if self.latent_format is not None:
self.cond_hint = self.latent_format.process_in(self.cond_hint)
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
# prepare mask_cond_hint
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
extra = self.extra_args.copy()
for c in self.extra_conds:
temp = cond.get(c, None)
if temp is not None:
extra[c] = temp.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
self.x_noisy_shape = x_noisy.shape
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
return self.control_merge(control, control_prev, output_dtype=None)
def pre_run_advanced(self, *args, **kwargs):
self.is_flux = "Flux" in str(type(self.control_model).__name__)
return super().pre_run_advanced(*args, **kwargs)
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape=None):
if self.is_flux:
flux_shape = self.x_noisy_shape
return super().apply_advanced_strengths_and_masks(x, batched_number, flux_shape)
def copy(self):
c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
self.copy_to_advanced(c)
return c
def cleanup_advanced(self):
self.x_noisy_shape = None
return super().cleanup_advanced()
@staticmethod
def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced':
to_return = ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe,
global_average_pooling=v.global_average_pooling, compression_ratio=v.compression_ratio, latent_format=v.latent_format, load_device=v.load_device,
manual_cast_dtype=v.manual_cast_dtype)
v.copy_to(to_return)
return to_return
class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase):
def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, compression_ratio=8, upscale_algorithm="nearest_exact", device=None):
super().__init__(t2i_model=t2i_model, channels_in=channels_in, compression_ratio=compression_ratio, upscale_algorithm=upscale_algorithm, device=device)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter())
def control_merge_inject(self, control: dict[str, list[Tensor]], control_prev, output_dtype):
# match batch_size
# TODO: make this more efficient by modifying the cached self.control_input val instead of doing this every step
for key in control:
control_current = control[key]
for i in range(len(control_current)):
x = control_current[i]
if x is not None and x.size(0) == 1 and x.size(0) != self.batch_size:
control_current[i] = x.repeat(self.batch_size, 1, 1, 1)[:self.batch_size]
return AdvancedControlBase.control_merge_inject(self, control, control_prev, output_dtype)
def get_universal_weights(self) -> ControlWeights:
def t2i_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
if key == "middle":
return 1.0
c_len = 8 #len(control[key])
raw_weights = [(self.weights.base_multiplier ** float((c_len-1) - i)) for i in range(c_len)]
raw_weights = [raw_weights[-c_len], raw_weights[-3], raw_weights[-2], raw_weights[-1]]
raw_weights = get_properly_arranged_t2i_weights(raw_weights)
if key == "input":
raw_weights.reverse()
return raw_weights[idx]
return self.weights.copy_with_new_weights(new_weight_func=t2i_weights_func)
def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int:
if key == "middle":
return 0
# match how T2IAdapterAdvanced deals with universal weights
c_len = 8 #len(control[key])
indeces = [(c_len-1) - i for i in range(c_len)]
indeces = [indeces[-c_len], indeces[-3], indeces[-2], indeces[-1]]
indeces = get_properly_arranged_t2i_weights(indeces)
if key == "input":
indeces.reverse() # need to reverse to match recent ComfyUI changes
return indeces[idx]
def get_control_advanced(self, x_noisy, t, cond, batched_number):
try:
# if sub indexes present, replace original hint with subsection
if self.sub_idxs is not None:
# cond hints
full_cond_hint_original = self.cond_hint_original
actual_cond_hint_orig = full_cond_hint_original
del self.cond_hint
self.cond_hint = None
if full_cond_hint_original.size(0) < self.full_latent_length:
actual_cond_hint_orig = extend_to_batch_size(tensor=full_cond_hint_original, batch_size=full_cond_hint_original.size(0))
self.cond_hint_original = actual_cond_hint_orig[self.sub_idxs]
# mask hints
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
return super().get_control(x_noisy, t, cond, batched_number)
finally:
if self.sub_idxs is not None:
# replace original cond hint
self.cond_hint_original = full_cond_hint_original
del full_cond_hint_original
def copy(self):
c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in, self.compression_ratio, self.upscale_algorithm)
self.copy_to(c)
self.copy_to_advanced(c)
return c
def cleanup(self):
super().cleanup()
self.cleanup_advanced()
@staticmethod
def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced':
to_return = T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in,
compression_ratio=v.compression_ratio, upscale_algorithm=v.upscale_algorithm, device=v.device)
v.copy_to(to_return)
return to_return
class ControlLoraAdvanced(ControlLora, AdvancedControlBase):
def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False):
super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora())
# use some functions from ControlNetAdvanced
self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self))
self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self))
def get_universal_weights(self) -> ControlWeights:
raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)]
return self.weights.copy_with_new_weights(raw_weights)
def copy(self):
c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
self.copy_to_advanced(c)
return c
def cleanup(self):
super().cleanup()
self.cleanup_advanced()
@staticmethod
def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced':
to_return = ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe,
global_average_pooling=v.global_average_pooling)
v.copy_to(to_return)
return to_return
class SVDControlNetAdvanced(ControlNetAdvanced):
def __init__(self, control_model: SVDControlNet, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
def set_cond_hint_inject(self, *args, **kwargs):
to_return = super().set_cond_hint_inject(*args, **kwargs)
# cond hint for SVD-ControlNet needs to be scaled between (-1, 1) instead of (0, 1)
self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
return to_return
def get_control_advanced(self, x_noisy, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
output_dtype = x_noisy.dtype
# make cond_hint appropriate dimensions
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
# if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
if self.sub_idxs is not None:
actual_cond_hint_orig = self.cond_hint_original
if self.cond_hint_original.size(0) < self.full_latent_length:
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
else:
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
# prepare mask_cond_hint
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
# uses 'y' in new ComfyUI update
y = cond.get('y', None)
if y is not None:
y = y.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
# concat c_concat if exists (should exist for SVD), doubling channels to 8
if cond.get('c_concat', None) is not None:
x_noisy = torch.cat([x_noisy] + [cond['c_concat']], dim=1)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, cond=cond)
return self.control_merge(control, control_prev, output_dtype)
def copy(self):
c = SVDControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
self.copy_to(c)
self.copy_to_advanced(c)
return c
class SparseCtrlAdvanced(ControlNetAdvanced):
def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, sparse_settings: SparseSettings=None, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
self.control_model_wrapped = SparseModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.add_compatible_weight(ControlWeightType.SPARSECTRL)
self.control_model: SparseControlNet = self.control_model # does nothing except help with IDE hints
if self.control_model.use_simplified_conditioning_embedding:
# TODO: allow vae_optional to be used instead of preprocessor
#self.require_vae = True
self.allow_condhint_latents = True
self.sparse_settings = sparse_settings if sparse_settings is not None else SparseSettings.default()
self.model_latent_format = None # latent format for active SD model, NOT controlnet
self.preprocessed = False
def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
# normal ControlNet stuff
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
output_dtype = x_noisy.dtype
# set actual input length on motion model
actual_length = x_noisy.size(0)//batched_number
full_length = actual_length if self.sub_idxs is None else self.full_latent_length
self.control_model.set_actual_length(actual_length=actual_length, full_length=full_length)
# prepare cond_hint, if needed
dim_mult = 1 if self.control_model.use_simplified_conditioning_embedding else 8
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2]*dim_mult != self.cond_hint.shape[2] or x_noisy.shape[3]*dim_mult != self.cond_hint.shape[3]:
# clear out cond_hint and conditioning_mask
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
# first, figure out which cond idxs are relevant, and where they fit in
cond_idxs, hint_order = self.sparse_settings.sparse_method.get_indexes(hint_length=self.cond_hint_original.size(0), full_length=full_length,
sub_idxs=self.sub_idxs if self.sparse_settings.is_context_aware() else None)
range_idxs = list(range(full_length)) if self.sub_idxs is None else self.sub_idxs
hint_idxs = [] # idxs in cond_idxs
local_idxs = [] # idx to put in final cond_hint
for i,cond_idx in enumerate(cond_idxs):
if cond_idx in range_idxs:
hint_idxs.append(i)
local_idxs.append(range_idxs.index(cond_idx))
# log_string = f"cond_idxs: {cond_idxs}, local_idxs: {local_idxs}, hint_idxs: {hint_idxs}, hint_order: {hint_order}"
# if self.sub_idxs is not None:
# log_string += f" sub_idxs: {self.sub_idxs[0]}-{self.sub_idxs[-1]}"
# logger.warn(log_string)
# determine cond/uncond indexes that will get masked
self.local_sparse_idxs = []
self.local_sparse_idxs_inverse = list(range(x_noisy.size(0)))
for batch_idx in range(batched_number):
for i in local_idxs:
actual_i = i+(batch_idx*actual_length)
self.local_sparse_idxs.append(actual_i)
if actual_i in self.local_sparse_idxs_inverse:
self.local_sparse_idxs_inverse.remove(actual_i)
# sub_cond_hint now contains the hints relevant to current x_noisy
if hint_order is None:
sub_cond_hint = self.cond_hint_original[hint_idxs].to(dtype).to(x_noisy.device)
else:
sub_cond_hint = self.cond_hint_original[hint_order][hint_idxs].to(dtype).to(x_noisy.device)
# scale cond_hints to match noisy input
if self.control_model.use_simplified_conditioning_embedding:
# RGB SparseCtrl; the inputs are latents - use bilinear to avoid blocky artifacts
sub_cond_hint = self.model_latent_format.process_in(sub_cond_hint) # multiplies by model scale factor
sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3], x_noisy.shape[2], "nearest-exact", "center").to(dtype).to(x_noisy.device)
else:
# other SparseCtrl; inputs are typical images
sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
# prepare cond_hint (b, c, h ,w)
cond_shape = list(sub_cond_hint.shape)
cond_shape[0] = len(range_idxs)
self.cond_hint = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
self.cond_hint[local_idxs] = sub_cond_hint[:]
# prepare cond_mask (b, 1, h, w)
cond_shape[1] = 1
cond_mask = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
cond_mask[local_idxs] = self.sparse_settings.sparse_mask_mult * self.weights.extras.get(SparseConst.MASK_MULT, 1.0)
# combine cond_hint and cond_mask into (b, c+1, h, w)
if not self.sparse_settings.merged:
self.cond_hint = torch.cat([self.cond_hint, cond_mask], dim=1)
del sub_cond_hint
del cond_mask
# make cond_hint match x_noisy batch
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
# prepare mask_cond_hint
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
context = cond['c_crossattn']
y = cond.get('y', None)
if y is not None:
y = y.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
return self.control_merge(control, control_prev, output_dtype)
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, *args, **kwargs):
# apply mults to indexes with and without a direct condhint
x[self.local_sparse_idxs] *= self.sparse_settings.sparse_hint_mult * self.weights.extras.get(SparseConst.HINT_MULT, 1.0)
x[self.local_sparse_idxs_inverse] *= self.sparse_settings.sparse_nonhint_mult * self.weights.extras.get(SparseConst.NONHINT_MULT, 1.0)
return super().apply_advanced_strengths_and_masks(x, batched_number, *args, **kwargs)
def pre_run_advanced(self, model, percent_to_timestep_function):
super().pre_run_advanced(model, percent_to_timestep_function)
if isinstance(self.cond_hint_original, AbstractPreprocWrapper):
if not self.control_model.use_simplified_conditioning_embedding:
raise ValueError("Any model besides RGB SparseCtrl should NOT have its images go through the RGB SparseCtrl preprocessor.")
self.cond_hint_original = self.cond_hint_original.condhint
self.model_latent_format = model.latent_format # LatentFormat object, used to process_in latent cond hint
if self.control_model.motion_wrapper is not None:
self.control_model.motion_wrapper.reset()
self.control_model.motion_wrapper.set_strength(self.sparse_settings.motion_strength)
self.control_model.motion_wrapper.set_scale_multiplier(self.sparse_settings.motion_scale)
def cleanup_advanced(self):
super().cleanup_advanced()
if self.model_latent_format is not None:
del self.model_latent_format
self.model_latent_format = None
self.local_sparse_idxs = None
self.local_sparse_idxs_inverse = None
def copy(self):
c = SparseCtrlAdvanced(self.control_model, self.timestep_keyframes, self.sparse_settings, self.global_average_pooling, self.load_device, self.manual_cast_dtype)
self.copy_to(c)
self.copy_to_advanced(c)
return c
def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
# from pathlib import Path
# log_name = ckpt_path.split('\\')[-1]
# with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile:
# for key, value in controlnet_data.items():
# afile.write(f"{key}:\t{value.shape}\n")
control = None
# check if a non-vanilla ControlNet
controlnet_type = ControlWeightType.DEFAULT
has_controlnet_key = False
has_motion_modules_key = False
has_temporal_res_block_key = False
for key in controlnet_data:
# LLLite check
if "lllite" in key:
controlnet_type = ControlWeightType.CONTROLLLLITE
break
# SparseCtrl check
elif "motion_modules" in key:
has_motion_modules_key = True
elif "controlnet" in key:
has_controlnet_key = True
# SVD-ControlNet check
elif "temporal_res_block" in key:
has_temporal_res_block_key = True
# ControlNet++ check
elif "task_embedding" in key:
pass
if has_controlnet_key and has_motion_modules_key:
controlnet_type = ControlWeightType.SPARSECTRL
elif has_controlnet_key and has_temporal_res_block_key:
controlnet_type = ControlWeightType.SVD_CONTROLNET
if controlnet_type != ControlWeightType.DEFAULT:
if controlnet_type == ControlWeightType.CONTROLLLLITE:
control = load_controllllite(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
elif controlnet_type == ControlWeightType.SPARSECTRL:
control = load_sparsectrl(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe, model=model)
elif controlnet_type == ControlWeightType.SVD_CONTROLNET:
control = load_svdcontrolnet(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
# otherwise, load vanilla ControlNet
else:
try:
# hacky way of getting load_torch_file in load_controlnet to use already-present controlnet_data and not redo loading
orig_load_torch_file = comfy.utils.load_torch_file
comfy.utils.load_torch_file = load_torch_file_with_dict_factory(controlnet_data, orig_load_torch_file)
control = comfy_cn.load_controlnet(ckpt_path, model=model)
finally:
comfy.utils.load_torch_file = orig_load_torch_file
return convert_to_advanced(control, timestep_keyframe=timestep_keyframe)
def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None):
# if already advanced, leave it be
if is_advanced_controlnet(control):
return control
# if exactly ControlNet returned, transform it into ControlNetAdvanced
if type(control) == ControlNet:
control = ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
if is_sd3_advanced_controlnet(control):
control.require_vae = True
return control
# if exactly ControlLora returned, transform it into ControlLoraAdvanced
elif type(control) == ControlLora:
return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
# if T2IAdapter returned, transform it into T2IAdapterAdvanced
elif isinstance(control, T2IAdapter):
return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
# otherwise, leave it be - might be something I am not supporting yet
return control
def convert_all_to_advanced(conds: list[list[dict[str]]]) -> tuple[bool, list]:
cache = {}
modified = False
new_conds = []
for cond in conds:
converted_cond = None
if cond is not None:
need_to_convert = False
# first, check if there is even a need to convert
for sub_cond in cond:
actual_cond = sub_cond[1]
if "control" in actual_cond:
if not are_all_advanced_controlnet(actual_cond["control"]):
need_to_convert = True
break
if not need_to_convert:
converted_cond = cond
else:
converted_cond = []
for sub_cond in cond:
new_sub_cond: list = []
for actual_cond in sub_cond:
if not type(actual_cond) == dict:
new_sub_cond.append(actual_cond)
continue
if "control" not in actual_cond:
new_sub_cond.append(actual_cond)
elif are_all_advanced_controlnet(actual_cond["control"]):
new_sub_cond.append(actual_cond)
else:
actual_cond = actual_cond.copy()
actual_cond["control"] = _convert_all_control_to_advanced(actual_cond["control"], cache)
new_sub_cond.append(actual_cond)
modified = True
converted_cond.append(new_sub_cond)
new_conds.append(converted_cond)
return modified, new_conds
def _convert_all_control_to_advanced(input_object: ControlBase, cache: dict):
output_object = input_object
# iteratively convert to advanced, if needed
next_cn = None
curr_cn = input_object
iter = 0
while curr_cn is not None:
if not is_advanced_controlnet(curr_cn):
# if already in cache, then conversion was done before, so just link it and exit
if curr_cn in cache:
new_cn = cache[curr_cn]
if next_cn is not None:
setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
next_cn.previous_controlnet = new_cn
if iter == 0: # if was top-level controlnet, that's the new output
output_object = new_cn
break
try:
# convert to advanced, and assign previous_controlnet (convert doesn't transfer it)
new_cn = convert_to_advanced(curr_cn)
except Exception as e:
raise Exception("Failed to automatically convert a ControlNet to Advanced to support sliding window context.", e)
new_cn.previous_controlnet = curr_cn.previous_controlnet
if iter == 0: # if was top-level controlnet, that's the new output
output_object = new_cn
# if next_cn is present, then it needs to be pointed to new_cn
if next_cn is not None:
setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
next_cn.previous_controlnet = new_cn
# add to cache
cache[curr_cn] = new_cn
curr_cn = new_cn
next_cn = curr_cn
curr_cn = curr_cn.previous_controlnet
iter += 1
return output_object
def restore_all_controlnet_conns(conds: list[list[dict[str]]]):
# if a cn has an _orig_previous_controlnet property, restore it and delete
for main_cond in conds:
if main_cond is not None:
for cond in main_cond:
if "control" in cond[1]:
# if ACN is the one to have initialized it, delete it
# TODO: maybe check if someone else did a similar hack, and carefully pluck out our stuff?
if CONTROL_INIT_BY_ACN in cond[1]:
cond[1].pop("control")
cond[1].pop(CONTROL_INIT_BY_ACN)
else:
_restore_all_controlnet_conns(cond[1]["control"])
def _restore_all_controlnet_conns(input_object: ControlBase):
# restore original previous_controlnet if needed
curr_cn = input_object
while curr_cn is not None:
if hasattr(curr_cn, ORIG_PREVIOUS_CONTROLNET):
curr_cn.previous_controlnet = getattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
delattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
curr_cn = curr_cn.previous_controlnet
def are_all_advanced_controlnet(input_object: ControlBase):
# iteratively check if linked controlnets objects are all advanced
curr_cn = input_object
while curr_cn is not None:
if not is_advanced_controlnet(curr_cn):
return False
curr_cn = curr_cn.previous_controlnet
return True
def is_advanced_controlnet(input_object):
return hasattr(input_object, "sub_idxs")
def is_sd3_advanced_controlnet(input_object: ControlNetAdvanced):
return type(input_object) == ControlNetAdvanced and input_object.latent_format is not None
def load_sparsectrl(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, sparse_settings=SparseSettings.default(), model=None) -> SparseCtrlAdvanced:
if controlnet_data is None:
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
# first, separate out motion part from normal controlnet part and attempt to load that portion
motion_data = {}
for key in list(controlnet_data.keys()):
if "temporal" in key:
motion_data[key] = controlnet_data.pop(key)
if len(motion_data) == 0:
raise ValueError(f"No motion-related keys in '{ckpt_path}'; not a valid SparseCtrl model!")
# now, load as if it was a normal controlnet - mostly copied from comfy load_controlnet function
controlnet_config: dict[str] = None
is_diffusers = False
use_simplified_conditioning_embedding = False
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data:
is_diffusers = True
if "controlnet_cond_embedding.weight" in controlnet_data:
is_diffusers = True
use_simplified_conditioning_embedding = True
if is_diffusers: #diffusers format
unet_dtype = comfy.model_management.unet_dtype()
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
# normal conditioning embedding
if not use_simplified_conditioning_embedding:
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
# simplified conditioning embedding
else:
count = 0
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_cond_embedding{}".format(s)
k_out = "input_hint_block.{}{}".format(count, s)
diffusers_keys[k_in] = k_out
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
logger.info("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
raise ValueError("The provided model is not a valid SparseCtrl model! [ErrorCode: HORSERADISH]")
if controlnet_config is None:
unet_dtype = comfy.model_management.unet_dtype()
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype is not None:
controlnet_config["operations"] = manual_cast_clean_groupnorm
else:
controlnet_config["operations"] = disable_weight_init_clean_groupnorm
controlnet_config.pop("out_channels")
# get proper hint channels
if use_simplified_conditioning_embedding:
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
else:
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
control_model = SparseControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
logger.warning("WARNING: Loaded a diff SparseCtrl without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
if len(missing) > 0 or len(unexpected) > 0:
logger.info(f"SparseCtrl ControlNet: {missing}, {unexpected}")
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
# actually load motion portion of model now
motion_wrapper: SparseCtrlMotionWrapper = SparseCtrlMotionWrapper(motion_data, ops=controlnet_config.get("operations", None)).to(comfy.model_management.unet_dtype())
missing, unexpected = motion_wrapper.load_state_dict(motion_data)
if len(missing) > 0 or len(unexpected) > 0:
logger.info(f"SparseCtrlMotionWrapper: {missing}, {unexpected}")
# both motion portion and controlnet portions are loaded; bring them together if using motion model
if sparse_settings.use_motion:
motion_wrapper.inject(control_model)
control = SparseCtrlAdvanced(control_model, timestep_keyframes=timestep_keyframe, sparse_settings=sparse_settings, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
def load_svdcontrolnet(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
if controlnet_data is None:
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
controlnet_config = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
unet_dtype = comfy.model_management.unet_dtype()
controlnet_config = svd_unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
diffusers_keys = svd_unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
spatial_leftover_keys = []
temporal_leftover_keys = []
other_leftover_keys = []
for key in leftover_keys:
if "spatial" in key:
spatial_leftover_keys.append(key)
elif "temporal" in key:
temporal_leftover_keys.append(key)
else:
other_leftover_keys.append(key)
logger.warn(f"spatial_leftover_keys ({len(spatial_leftover_keys)}): {spatial_leftover_keys}")
logger.warn(f"temporal_leftover_keys ({len(temporal_leftover_keys)}): {temporal_leftover_keys}")
logger.warn(f"other_leftover_keys ({len(other_leftover_keys)}): {other_leftover_keys}")
#print("leftover keys:", leftover_keys)
controlnet_data = new_sd
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
raise ValueError("The provided model is not a valid SVD-ControlNet model! [ErrorCode: MUSTARD]")
if controlnet_config is None:
unet_dtype = comfy.model_management.unet_dtype()
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype is not None:
controlnet_config["operations"] = comfy.ops.manual_cast
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = SVDControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
if len(missing) > 0 or len(unexpected) > 0:
logger.info(f"SVD-ControlNet: {missing}, {unexpected}")
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = SVDControlNetAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control