radames commited on
Commit
73b790b
·
1 Parent(s): b488c1a

folder renaming

Browse files
Dockerfile CHANGED
@@ -36,4 +36,4 @@ WORKDIR $HOME/app
36
  # Copy the current directory contents into the container at $HOME/app setting the owner to the user
37
  COPY --chown=user . $HOME/app
38
 
39
- CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
 
36
  # Copy the current directory contents into the container at $HOME/app setting the owner to the user
37
  COPY --chown=user . $HOME/app
38
 
39
+ CMD ["uvicorn", "app-img2img:app", "--host", "0.0.0.0", "--port", "7860"]
README.md CHANGED
@@ -24,18 +24,18 @@ You need CUDA and Python
24
  python -m venv venv
25
  source venv/bin/activate
26
  pip install -r requirements.txt
27
- uvicorn "app:app" --host 0.0.0.0 --port 7860 --reload
28
  ```
29
  or with environment variables
30
  ```bash
31
- TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app:app" --host 0.0.0.0 --port 7860 --reload
32
  ```
33
 
34
  If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS.
35
 
36
  ```bash
37
  openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
38
- uvicorn "app:app" --host 0.0.0.0 --port 7860 --reload --log-level info --ssl-certfile=certificate.pem --ssl-keyfile=key.pem
39
  ```
40
  ## Docker
41
  You need NVIDIA Container Toolkit for Docker
 
24
  python -m venv venv
25
  source venv/bin/activate
26
  pip install -r requirements.txt
27
+ uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
28
  ```
29
  or with environment variables
30
  ```bash
31
+ TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
32
  ```
33
 
34
  If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS.
35
 
36
  ```bash
37
  openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
38
+ uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload --log-level info --ssl-certfile=certificate.pem --ssl-keyfile=key.pem
39
  ```
40
  ## Docker
41
  You need NVIDIA Container Toolkit for Docker
app.py → app-img2img.py RENAMED
@@ -32,6 +32,7 @@ if SAFETY_CHECKER == "True":
32
  "SimianLuo/LCM_Dreamshaper_v7",
33
  custom_pipeline="latent_consistency_img2img.py",
34
  custom_revision="main",
 
35
  )
36
  else:
37
  pipe = DiffusionPipeline.from_pretrained(
@@ -39,17 +40,20 @@ else:
39
  safety_checker=None,
40
  custom_pipeline="latent_consistency_img2img.py",
41
  custom_revision="main",
 
42
  )
43
  #TODO try to use tiny VAE
44
  # pipe.vae = AutoencoderTiny.from_pretrained(
45
  # "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True
46
  # )
47
  pipe.set_progress_bar_config(disable=True)
48
- pipe.to(torch_device="cuda", torch_dtype=torch.float16)
49
  pipe.unet.to(memory_format=torch.channels_last)
50
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
51
  user_queue_map = {}
52
 
 
 
53
 
54
  def predict(input_image, prompt, guidance_scale=8.0, strength=0.5, seed=2159232):
55
  generator = torch.manual_seed(seed)
@@ -210,4 +214,4 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
210
  traceback.print_exc()
211
 
212
 
213
- app.mount("/", StaticFiles(directory="public", html=True), name="public")
 
32
  "SimianLuo/LCM_Dreamshaper_v7",
33
  custom_pipeline="latent_consistency_img2img.py",
34
  custom_revision="main",
35
+ torch_dtype=torch.float32
36
  )
37
  else:
38
  pipe = DiffusionPipeline.from_pretrained(
 
40
  safety_checker=None,
41
  custom_pipeline="latent_consistency_img2img.py",
42
  custom_revision="main",
43
+ torch_dtype=torch.float32
44
  )
45
  #TODO try to use tiny VAE
46
  # pipe.vae = AutoencoderTiny.from_pretrained(
47
  # "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True
48
  # )
49
  pipe.set_progress_bar_config(disable=True)
50
+ pipe.to(torch_device="cuda", torch_dtype=torch.float32)
51
  pipe.unet.to(memory_format=torch.channels_last)
52
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
53
  user_queue_map = {}
54
 
55
+ # for torch.compile
56
+ pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
57
 
58
  def predict(input_image, prompt, guidance_scale=8.0, strength=0.5, seed=2159232):
59
  generator = torch.manual_seed(seed)
 
214
  traceback.print_exc()
215
 
216
 
217
+ app.mount("/", StaticFiles(directory="img2img", html=True), name="public")
{public → img2img}/index.html RENAMED
File without changes
public/tailwind.config.js → tailwind.config.js RENAMED
File without changes