Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import transformers | |
import torch | |
model_id = "GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct" | |
pipeline = transformers.pipeline( | |
"text-generation", | |
model=model_id, | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device_map="auto", | |
) | |
terminators = [ | |
pipeline.tokenizer.eos_token_id, | |
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
outputs = pipeline( | |
messages, | |
max_new_tokens=max_tokens, | |
do_sample = True, | |
temperature=temperature, | |
top_p=top_p, | |
eos_token_id=terminators | |
) | |
yield outputs[0]["generated_text"][-1]["content"] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
title = "🇮🇩 Sahabat AI (Gemma)", | |
description = """This model is a fine-tuned version of SEA-LIONv3's Gemma model trained predominantly on Indonesian, Javanese, and Sundanese data. | |
#### [Model page](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)""", | |
examples = [["Tolong carin resep sop buntut dong"], ["Sopo wae sing ana ing Punakawan?"], ["Kumaha caritana si Kabayan?"]], | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |