Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int = 8, | |
| qkv_bias: bool = False, | |
| qk_norm: bool = False, | |
| rope=None, | |
| fused_attn: bool = True, # use F.scaled_dot_product_attention or not | |
| attn_drop: float = 0., | |
| proj_drop: float = 0., | |
| norm_layer: nn.Module = nn.LayerNorm, | |
| ) -> None: | |
| super().__init__() | |
| assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.scale = self.head_dim ** -0.5 | |
| self.fused_attn = fused_attn | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
| self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.rope = rope | |
| def forward(self, x: torch.Tensor, pos=None) -> torch.Tensor: | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv.unbind(0) | |
| q, k = self.q_norm(q), self.k_norm(k) | |
| if self.rope is not None: | |
| q = self.rope(q, pos) | |
| k = self.rope(k, pos) | |
| if self.fused_attn: | |
| x = F.scaled_dot_product_attention( | |
| q, k, v, | |
| dropout_p=self.attn_drop.p if self.training else 0., | |
| ) | |
| else: | |
| q = q * self.scale | |
| attn = q @ k.transpose(-2, -1) | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = attn @ v | |
| x = x.transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x |