gangweix's picture
Update app.py
1b8a057 verified
raw
history blame
6.55 kB
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import torch.nn.functional as F
import open3d as o3d
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from ppd.utils.set_seed import set_seed
from ppd.utils.align_depth_func import recover_metric_depth_ransac
from ppd.utils.depth2pcd import depth2pcd
from moge.model.v2 import MoGeModel
from ppd.models.ppd import PixelPerfectDepth
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 100vh;
}
#img-display-output {
max-height: 100vh;
}
#download {
height: 62px;
}
#img-display-output .image-slider-image {
object-fit: contain !important;
width: 100% !important;
height: 100% !important;
}
"""
set_seed(666)
def main(share=True):
print("Initializing Pixel-Perfect Depth Demo...")
# DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
default_steps = 10
model = PixelPerfectDepth(sampling_steps=default_steps)
ckpt_path = hf_hub_download(
repo_id="gangweix/Pixel-Perfect-Depth",
filename="ppd.pth",
repo_type="model"
)
state_dict = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(state_dict, strict=False)
model = model.to(DEVICE).eval()
moge_model = MoGeModel.from_pretrained("Ruicheng/moge-2-vitl-normal").to(DEVICE).eval()
cmap = matplotlib.colormaps.get_cmap('Spectral')
title = "# Pixel-Perfect Depth"
description = """Official demo for **Pixel-Perfect Depth**.
Please refer to our [paper](), [project page](https://pixel-perfect-depth.github.io), and [github](https://github.com/gangweix/pixel-perfect-depth) for more details."""
@spaces.GPU
def predict_depth(image, denoise_steps):
depth, resize_image = model.infer_image(image, sampling_steps=denoise_steps)
return depth, resize_image
@spaces.GPU
def predict_moge_depth(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = torch.tensor(image / 255, dtype=torch.float32, device=DEVICE).permute(2, 0, 1)
metric_depth, mask, intrinsics = moge_model.infer(image)
metric_depth[~mask] = metric_depth[mask].max()
return metric_depth, mask, intrinsics
def on_submit(image, denoise_steps, apply_filter):
H, W = image.shape[:2]
ppd_depth, resize_image = predict_depth(image[:, :, ::-1], denoise_steps)
resize_H, resize_W = resize_image.shape[:2]
# moge provide metric depth and intrinsics
moge_depth, mask, intrinsics = predict_moge_depth(resize_image)
# relative depth -> metric depth
metric_depth = recover_metric_depth_ransac(ppd_depth.squeeze().cpu().numpy(), moge_depth, mask)
intrinsics[0, 0] *= resize_W
intrinsics[1, 1] *= resize_H
intrinsics[0, 2] *= resize_W
intrinsics[1, 2] *= resize_H
# metric depth -> point cloud
pcd = depth2pcd(metric_depth, intrinsics, color=cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB), input_mask=mask, ret_pcd=True)
if apply_filter:
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=3.0)
pcd = pcd.select_by_index(ind)
# save pcd to temporary .ply for Model3D
tmp_ply = tempfile.NamedTemporaryFile(suffix='.ply', delete=False)
o3d.io.write_point_cloud(tmp_ply.name, pcd)
depth = cv2.resize(ppd_depth, (W, H), interpolation=cv2.INTER_LINEAR)
# save raw depth (npy)
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_raw_depth.name, depth)
depth_vis = (depth - depth.min()) / (depth.max() - depth.min()+1e-5) * 255.0
depth_vis = depth_vis.astype(np.uint8)
colored_depth = (cmap(depth_vis)[:, :, :3] * 255).astype(np.uint8)
split_region = np.ones((image.shape[0], 50, 3), dtype=np.uint8) * 255
combined_result = cv2.hconcat([image[:, :, ::-1], split_region, colored_depth[:, :, ::-1]])
tmp_concat = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
cv2.imwrite(tmp_concat.name, combined_result)
return [(image, colored_depth), tmp_ply.name, tmp_concat.name, tmp_raw_depth.name, tmp_ply.name]
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
# Left: input image + settings
with gr.Column():
input_image = gr.Image(label="Input Image", image_mode="RGB", type='numpy', elem_id='img-display-input')
with gr.Accordion(label="Settings", open=False):
denoise_steps = gr.Slider(label="Denoising Steps", minimum=1, maximum=50, value=10, step=1)
apply_filter = gr.Checkbox(label="Apply filter points", value=True)
submit_btn = gr.Button(value="Predict Depth")
# Right: 3D point cloud + depth
with gr.Column():
with gr.Tabs():
with gr.Tab("3D View"):
model_3d = gr.Model3D(display_mode="solid", label="3D Point Map", clear_color=[1,1,1,1], height="60vh")
with gr.Tab("Depth"):
depth_map = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
concat_file = gr.File(label="Concatenated visualization (image+depth)", elem_id="image-depth-download")
raw_depth_file = gr.File(label="Raw depth output (saved as .npy)", elem_id="download")
pcd_file = gr.File(label="Point Cloud (.ply)", elem_id="download-ply")
submit_btn.click(
on_submit,
inputs=[input_image, denoise_steps, apply_filter],
outputs=[depth_map, model_3d, concat_file, raw_depth_file, pcd_file]
)
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
examples = gr.Examples(
examples=example_files,
inputs=[input_image],
outputs=[depth_map, model_3d, concat_file, raw_depth_file, pcd_file],
fn=on_submit
)
demo.queue().launch(share=share)
if __name__ == '__main__':
main(share=True)