Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import scipy.io.wavfile | |
import numpy as np | |
# Load the MMS-TTS model and processor for Tibetan (bod) | |
model_id = "ganga4364/sherab-tts" # Replace with your fine-tuned model if necessary | |
# Use the text-to-speech pipeline with the model | |
synthesiser = pipeline("text-to-speech", model_id) # add device=0 if you want to use a GPU | |
# Function to perform TTS inference and save audio to a file | |
def generate_audio(input_text): | |
# Perform TTS inference | |
speech = synthesiser(input_text) | |
file_path = "finetuned_output.wav" | |
# Save the audio to a file (e.g., 'output.wav') | |
scipy.io.wavfile.write(file_path, rate=speech["sampling_rate"], data=speech["audio"][0]) | |
# Return the path to the audio file | |
return file_path | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_audio, | |
inputs="text", # Text input for the TTS | |
outputs="audio", # Output will be an audio file | |
title="Tibetan Text-to-Speech (MMS-TTS)", | |
description="Enter Tibetan text and generate speech using MMS-TTS." | |
) | |
# Launch the Gradio interface | |
iface.launch() | |