Spaces:
Runtime error
Runtime error
# coding: utf-8 | |
""" | |
Wrapper for LivePortrait core functions | |
""" | |
import os.path as osp | |
import numpy as np | |
import cv2 | |
import torch | |
import yaml | |
from .utils.timer import Timer | |
from .utils.helper import load_model, concat_feat | |
from .utils.camera import headpose_pred_to_degree, get_rotation_matrix | |
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio | |
from .config.inference_config import InferenceConfig | |
from .utils.rprint import rlog as log | |
class LivePortraitWrapper(object): | |
def __init__(self, inference_cfg: InferenceConfig): | |
self.inference_cfg = inference_cfg | |
self.device_id = inference_cfg.device_id | |
if inference_cfg.flag_force_cpu: | |
self.device = 'cpu' | |
else: | |
self.device = 'cuda:' + str(self.device_id) | |
model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader) | |
# init F | |
self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor') | |
log(f'Load appearance_feature_extractor done.') | |
# init M | |
self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor') | |
log(f'Load motion_extractor done.') | |
# init W | |
self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module') | |
log(f'Load warping_module done.') | |
# init G | |
self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator') | |
log(f'Load spade_generator done.') | |
# init S and R | |
if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S): | |
self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module') | |
log(f'Load stitching_retargeting_module done.') | |
else: | |
self.stitching_retargeting_module = None | |
self.timer = Timer() | |
def update_config(self, user_args): | |
for k, v in user_args.items(): | |
if hasattr(self.inference_cfg, k): | |
setattr(self.inference_cfg, k, v) | |
def prepare_source(self, img: np.ndarray) -> torch.Tensor: | |
""" construct the input as standard | |
img: HxWx3, uint8, 256x256 | |
""" | |
h, w = img.shape[:2] | |
if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]: | |
x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1])) | |
else: | |
x = img.copy() | |
if x.ndim == 3: | |
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1 | |
elif x.ndim == 4: | |
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1 | |
else: | |
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}') | |
x = np.clip(x, 0, 1) # clip to 0~1 | |
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW | |
x = x.to(self.device) | |
return x | |
def prepare_driving_videos(self, imgs) -> torch.Tensor: | |
""" construct the input as standard | |
imgs: NxBxHxWx3, uint8 | |
""" | |
if isinstance(imgs, list): | |
_imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1 | |
elif isinstance(imgs, np.ndarray): | |
_imgs = imgs | |
else: | |
raise ValueError(f'imgs type error: {type(imgs)}') | |
y = _imgs.astype(np.float32) / 255. | |
y = np.clip(y, 0, 1) # clip to 0~1 | |
y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW | |
y = y.to(self.device) | |
return y | |
def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor: | |
""" get the appearance feature of the image by F | |
x: Bx3xHxW, normalized to 0~1 | |
""" | |
with torch.no_grad(): | |
with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision): | |
feature_3d = self.appearance_feature_extractor(x) | |
return feature_3d.float() | |
def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict: | |
""" get the implicit keypoint information | |
x: Bx3xHxW, normalized to 0~1 | |
flag_refine_info: whether to transform the pose to degrees and the dimention of the reshape | |
return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' | |
""" | |
with torch.no_grad(): | |
with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision): | |
kp_info = self.motion_extractor(x) | |
if self.inference_cfg.flag_use_half_precision: | |
# float the dict | |
for k, v in kp_info.items(): | |
if isinstance(v, torch.Tensor): | |
kp_info[k] = v.float() | |
flag_refine_info: bool = kwargs.get('flag_refine_info', True) | |
if flag_refine_info: | |
bs = kp_info['kp'].shape[0] | |
kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1 | |
kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1 | |
kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1 | |
kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3 | |
kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3 | |
return kp_info | |
def get_pose_dct(self, kp_info: dict) -> dict: | |
pose_dct = dict( | |
pitch=headpose_pred_to_degree(kp_info['pitch']).item(), | |
yaw=headpose_pred_to_degree(kp_info['yaw']).item(), | |
roll=headpose_pred_to_degree(kp_info['roll']).item(), | |
) | |
return pose_dct | |
def get_fs_and_kp_info(self, source_prepared, driving_first_frame): | |
# get the canonical keypoints of source image by M | |
source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True) | |
source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll']) | |
# get the canonical keypoints of first driving frame by M | |
driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True) | |
driving_first_frame_rotation = get_rotation_matrix( | |
driving_first_frame_kp_info['pitch'], | |
driving_first_frame_kp_info['yaw'], | |
driving_first_frame_kp_info['roll'] | |
) | |
# get feature volume by F | |
source_feature_3d = self.extract_feature_3d(source_prepared) | |
return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation | |
def transform_keypoint(self, kp_info: dict): | |
""" | |
transform the implicit keypoints with the pose, shift, and expression deformation | |
kp: BxNx3 | |
""" | |
kp = kp_info['kp'] # (bs, k, 3) | |
pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] | |
t, exp = kp_info['t'], kp_info['exp'] | |
scale = kp_info['scale'] | |
pitch = headpose_pred_to_degree(pitch) | |
yaw = headpose_pred_to_degree(yaw) | |
roll = headpose_pred_to_degree(roll) | |
bs = kp.shape[0] | |
if kp.ndim == 2: | |
num_kp = kp.shape[1] // 3 # Bx(num_kpx3) | |
else: | |
num_kp = kp.shape[1] # Bxnum_kpx3 | |
rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3) | |
# Eqn.2: s * (R * x_c,s + exp) + t | |
kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) | |
kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3) | |
kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty | |
return kp_transformed | |
def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor: | |
""" | |
kp_source: BxNx3 | |
eye_close_ratio: Bx3 | |
Return: Bx(3*num_kp+2) | |
""" | |
feat_eye = concat_feat(kp_source, eye_close_ratio) | |
with torch.no_grad(): | |
delta = self.stitching_retargeting_module['eye'](feat_eye) | |
return delta | |
def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor: | |
""" | |
kp_source: BxNx3 | |
lip_close_ratio: Bx2 | |
""" | |
feat_lip = concat_feat(kp_source, lip_close_ratio) | |
with torch.no_grad(): | |
delta = self.stitching_retargeting_module['lip'](feat_lip) | |
return delta | |
def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: | |
""" | |
kp_source: BxNx3 | |
kp_driving: BxNx3 | |
Return: Bx(3*num_kp+2) | |
""" | |
feat_stiching = concat_feat(kp_source, kp_driving) | |
with torch.no_grad(): | |
delta = self.stitching_retargeting_module['stitching'](feat_stiching) | |
return delta | |
def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: | |
""" conduct the stitching | |
kp_source: Bxnum_kpx3 | |
kp_driving: Bxnum_kpx3 | |
""" | |
if self.stitching_retargeting_module is not None: | |
bs, num_kp = kp_source.shape[:2] | |
kp_driving_new = kp_driving.clone() | |
delta = self.stitch(kp_source, kp_driving_new) | |
delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3 | |
delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2 | |
kp_driving_new += delta_exp | |
kp_driving_new[..., :2] += delta_tx_ty | |
return kp_driving_new | |
return kp_driving | |
def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: | |
""" get the image after the warping of the implicit keypoints | |
feature_3d: Bx32x16x64x64, feature volume | |
kp_source: BxNx3 | |
kp_driving: BxNx3 | |
""" | |
# The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i)) | |
with torch.no_grad(): | |
with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision): | |
# get decoder input | |
ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving) | |
# decode | |
ret_dct['out'] = self.spade_generator(feature=ret_dct['out']) | |
# float the dict | |
if self.inference_cfg.flag_use_half_precision: | |
for k, v in ret_dct.items(): | |
if isinstance(v, torch.Tensor): | |
ret_dct[k] = v.float() | |
return ret_dct | |
def parse_output(self, out: torch.Tensor) -> np.ndarray: | |
""" construct the output as standard | |
return: 1xHxWx3, uint8 | |
""" | |
out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3 | |
out = np.clip(out, 0, 1) # clip to 0~1 | |
out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255 | |
return out | |
def calc_driving_ratio(self, driving_lmk_lst): | |
input_eye_ratio_lst = [] | |
input_lip_ratio_lst = [] | |
for lmk in driving_lmk_lst: | |
# for eyes retargeting | |
input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None])) | |
# for lip retargeting | |
input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None])) | |
return input_eye_ratio_lst, input_lip_ratio_lst | |
def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk): | |
c_s_eyes = calc_eye_close_ratio(source_lmk[None]) | |
c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device) | |
c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device) | |
# [c_s,eyes, c_d,eyes,i] | |
combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1) | |
return combined_eye_ratio_tensor | |
def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk): | |
c_s_lip = calc_lip_close_ratio(source_lmk[None]) | |
c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device) | |
c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1 | |
# [c_s,lip, c_d,lip,i] | |
combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2 | |
return combined_lip_ratio_tensor | |