Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
137096d
1
Parent(s):
39e3785
reverted to working
Browse files- app.py +20 -14
- requirements.txt +1 -1
- tabs/data_exploration.py +371 -371
- tabs/leaderboard.py +48 -551
- tabs/model_comparison.py +23 -117
- visualization.py +256 -0
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import warnings
|
2 |
|
3 |
warnings.filterwarnings("ignore")
|
@@ -19,41 +20,46 @@ from tabs.data_exploration import create_exploration_tab, filter_and_display
|
|
19 |
|
20 |
def create_app():
|
21 |
df = load_data()
|
|
|
22 |
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
|
23 |
|
24 |
with gr.Blocks(
|
25 |
theme=gr.themes.Soft(font=[gr.themes.GoogleFont("sans-serif")])
|
26 |
) as app:
|
27 |
-
with gr.Tabs()
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT)
|
35 |
|
36 |
-
|
37 |
-
exp_outputs = create_exploration_tab(df)
|
38 |
|
39 |
-
# Initial
|
40 |
-
|
41 |
fn=lambda: filter_leaderboard(
|
42 |
df, "All", list(CATEGORIES.keys())[0], "Performance"
|
43 |
),
|
44 |
outputs=[lb_output, lb_plot1, lb_plot2],
|
45 |
)
|
46 |
|
47 |
-
|
48 |
fn=lambda: compare_models(
|
49 |
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
50 |
),
|
51 |
outputs=[mc_info, mc_plot],
|
52 |
)
|
53 |
|
54 |
-
|
55 |
fn=lambda: filter_and_display(
|
56 |
-
MODELS[0],
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
),
|
58 |
outputs=exp_outputs[:-1],
|
59 |
)
|
|
|
1 |
+
# Add this at the top of your script
|
2 |
import warnings
|
3 |
|
4 |
warnings.filterwarnings("ignore")
|
|
|
20 |
|
21 |
def create_app():
|
22 |
df = load_data()
|
23 |
+
|
24 |
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
|
25 |
|
26 |
with gr.Blocks(
|
27 |
theme=gr.themes.Soft(font=[gr.themes.GoogleFont("sans-serif")])
|
28 |
) as app:
|
29 |
+
with gr.Tabs():
|
30 |
+
# Create tabs
|
31 |
+
lb_output, lb_plot1, lb_plot2 = create_leaderboard_tab(
|
32 |
+
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
|
33 |
+
)
|
34 |
|
35 |
+
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT)
|
|
|
36 |
|
37 |
+
exp_outputs = create_exploration_tab(df)
|
|
|
38 |
|
39 |
+
# Initial loads
|
40 |
+
app.load(
|
41 |
fn=lambda: filter_leaderboard(
|
42 |
df, "All", list(CATEGORIES.keys())[0], "Performance"
|
43 |
),
|
44 |
outputs=[lb_output, lb_plot1, lb_plot2],
|
45 |
)
|
46 |
|
47 |
+
app.load(
|
48 |
fn=lambda: compare_models(
|
49 |
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
50 |
),
|
51 |
outputs=[mc_info, mc_plot],
|
52 |
)
|
53 |
|
54 |
+
app.load(
|
55 |
fn=lambda: filter_and_display(
|
56 |
+
MODELS[0],
|
57 |
+
DATASETS[0],
|
58 |
+
min(SCORES),
|
59 |
+
max(SCORES),
|
60 |
+
0,
|
61 |
+
0,
|
62 |
+
0,
|
63 |
),
|
64 |
outputs=exp_outputs[:-1],
|
65 |
)
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio==5.
|
2 |
pandas
|
3 |
matplotlib
|
4 |
plotly
|
|
|
1 |
+
gradio==5.18.0
|
2 |
pandas
|
3 |
matplotlib
|
4 |
plotly
|
tabs/data_exploration.py
CHANGED
@@ -395,292 +395,305 @@ def create_exploration_tab(df):
|
|
395 |
"""Create an enhanced data exploration tab with better UI and functionality."""
|
396 |
|
397 |
# Main UI setup
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
}
|
422 |
-
|
423 |
-
:root[data-theme="dark"] {
|
424 |
-
--surface-color: #1e1e1e;
|
425 |
-
--surface-color-alt: #2d2d2d;
|
426 |
-
--text-color: #ffffff;
|
427 |
-
--text-muted: #a0a0a0;
|
428 |
-
--primary-text: #60a5fa;
|
429 |
-
--primary-text-light: rgba(96, 165, 250, 0.3);
|
430 |
-
--border-color: #404040;
|
431 |
-
--border-color-light: #333333;
|
432 |
-
--shadow-color: rgba(0,0,0,0.2);
|
433 |
-
--message-bg-user: #2d3748;
|
434 |
-
--message-bg-assistant: #1a1a1a;
|
435 |
-
--message-bg-system: #2c2516;
|
436 |
-
--response-bg: #1e2a3a;
|
437 |
-
--score-high: #60a5fa;
|
438 |
-
--score-med: #fbbf24;
|
439 |
-
--score-low: #ef4444;
|
440 |
-
}
|
441 |
-
|
442 |
-
#exploration-header {
|
443 |
-
margin-bottom: 1.5rem;
|
444 |
-
padding-bottom: 1rem;
|
445 |
-
border-bottom: 1px solid var(--border-color);
|
446 |
-
}
|
447 |
-
|
448 |
-
.filter-container {
|
449 |
-
background-color: var(--surface-color);
|
450 |
-
border-radius: 10px;
|
451 |
-
padding: 1rem;
|
452 |
-
margin-bottom: 1.5rem;
|
453 |
-
border: 1px solid var(--border-color);
|
454 |
-
box-shadow: 0 2px 6px var(--shadow-color);
|
455 |
-
}
|
456 |
-
|
457 |
-
.navigation-buttons button {
|
458 |
-
min-width: 120px;
|
459 |
-
font-weight: 500;
|
460 |
-
}
|
461 |
-
|
462 |
-
.content-panel {
|
463 |
-
margin-top: 1.5rem;
|
464 |
-
}
|
465 |
-
|
466 |
-
@media (max-width: 768px) {
|
467 |
-
.filter-row {
|
468 |
-
flex-direction: column;
|
469 |
}
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
522 |
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
|
|
|
|
542 |
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
with gr.Row():
|
566 |
-
|
567 |
-
|
568 |
-
# Navigation row
|
569 |
-
with gr.Row(variant="panel"):
|
570 |
-
with gr.Column(scale=1):
|
571 |
-
prev_btn = gr.Button(
|
572 |
-
"← Previous",
|
573 |
-
size="lg",
|
574 |
-
variant="secondary",
|
575 |
-
elem_classes="navigation-buttons",
|
576 |
-
)
|
577 |
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
|
|
|
|
|
|
600 |
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
)
|
608 |
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
current_index = gr.State(value=0)
|
621 |
-
|
622 |
-
def reset_index():
|
623 |
-
"""Reset the current index to 0"""
|
624 |
-
return 0
|
625 |
-
|
626 |
-
# Add these explicit event handlers for model and dataset changes
|
627 |
-
explore_model.change(
|
628 |
-
reset_index,
|
629 |
-
inputs=[],
|
630 |
-
outputs=[current_index],
|
631 |
-
)
|
632 |
-
|
633 |
-
explore_dataset.change(
|
634 |
-
reset_index,
|
635 |
-
inputs=[],
|
636 |
-
outputs=[current_index],
|
637 |
-
)
|
638 |
-
|
639 |
-
min_score.change(
|
640 |
-
reset_index,
|
641 |
-
inputs=[],
|
642 |
-
outputs=[current_index],
|
643 |
-
)
|
644 |
-
|
645 |
-
max_score.change(
|
646 |
-
reset_index,
|
647 |
-
inputs=[],
|
648 |
-
outputs=[current_index],
|
649 |
-
)
|
650 |
-
|
651 |
-
n_turns_filter.change(
|
652 |
-
reset_index,
|
653 |
-
inputs=[],
|
654 |
-
outputs=[current_index],
|
655 |
-
)
|
656 |
-
|
657 |
-
len_query_filter.change(
|
658 |
-
reset_index,
|
659 |
-
inputs=[],
|
660 |
-
outputs=[current_index],
|
661 |
-
)
|
662 |
-
|
663 |
-
n_tools_filter.change(
|
664 |
-
reset_index,
|
665 |
-
inputs=[],
|
666 |
-
outputs=[current_index],
|
667 |
-
)
|
668 |
-
|
669 |
-
# Reset filters
|
670 |
-
def reset_filters():
|
671 |
-
return (
|
672 |
-
MODELS[0],
|
673 |
-
DATASETS[0],
|
674 |
-
float(min(SCORES)),
|
675 |
-
float(max(SCORES)),
|
676 |
-
0, # n_turns
|
677 |
-
0, # len_query
|
678 |
-
0, # n_tools
|
679 |
)
|
680 |
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
explore_model,
|
685 |
explore_dataset,
|
686 |
min_score,
|
@@ -688,23 +701,31 @@ def create_exploration_tab(df):
|
|
688 |
n_turns_filter,
|
689 |
len_query_filter,
|
690 |
n_tools_filter,
|
691 |
-
]
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
inputs=[
|
|
|
708 |
explore_model,
|
709 |
explore_dataset,
|
710 |
min_score,
|
@@ -718,93 +739,72 @@ def create_exploration_tab(df):
|
|
718 |
metrics_display,
|
719 |
tool_info_display,
|
720 |
index_display,
|
|
|
721 |
],
|
722 |
)
|
723 |
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
],
|
744 |
-
)
|
745 |
-
|
746 |
-
next_btn.click(
|
747 |
-
navigate_next,
|
748 |
-
inputs=[
|
749 |
-
current_index,
|
750 |
-
explore_model,
|
751 |
-
explore_dataset,
|
752 |
-
min_score,
|
753 |
-
max_score,
|
754 |
-
n_turns_filter,
|
755 |
-
len_query_filter,
|
756 |
-
n_tools_filter,
|
757 |
-
],
|
758 |
-
outputs=[
|
759 |
-
chat_display,
|
760 |
-
metrics_display,
|
761 |
-
tool_info_display,
|
762 |
-
index_display,
|
763 |
-
current_index,
|
764 |
-
],
|
765 |
-
)
|
766 |
-
|
767 |
-
def update_slider_ranges(model, dataset):
|
768 |
-
df_chat = get_chat_and_score_df(model, dataset)
|
769 |
-
|
770 |
-
# Make sure columns are numeric first
|
771 |
-
df_chat["n_turns"] = pd.to_numeric(df_chat["n_turns"], errors="coerce").fillna(
|
772 |
-
0
|
773 |
-
)
|
774 |
-
df_chat["len_query"] = pd.to_numeric(
|
775 |
-
df_chat["len_query"], errors="coerce"
|
776 |
-
).fillna(0)
|
777 |
-
df_chat["n_tools"] = pd.to_numeric(df_chat["n_tools"], errors="coerce").fillna(
|
778 |
-
0
|
779 |
)
|
780 |
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
|
786 |
-
#
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
|
|
|
|
|
|
|
|
|
|
791 |
)
|
792 |
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
explore_dataset.change(
|
800 |
-
update_slider_ranges,
|
801 |
-
inputs=[explore_model, explore_dataset],
|
802 |
-
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
803 |
-
)
|
804 |
-
|
805 |
-
return [
|
806 |
-
chat_display,
|
807 |
-
metrics_display,
|
808 |
-
tool_info_display,
|
809 |
-
index_display,
|
810 |
-
]
|
|
|
395 |
"""Create an enhanced data exploration tab with better UI and functionality."""
|
396 |
|
397 |
# Main UI setup
|
398 |
+
with gr.Tab("Data Exploration"):
|
399 |
+
# CSS styling (unchanged)
|
400 |
+
gr.HTML(
|
401 |
+
"""
|
402 |
+
<style>
|
403 |
+
/* Custom styling for the exploration tab */
|
404 |
+
:root[data-theme="light"] {
|
405 |
+
--surface-color: #f8f9fa;
|
406 |
+
--surface-color-alt: #ffffff;
|
407 |
+
--text-color: #202124;
|
408 |
+
--text-muted: #666666;
|
409 |
+
--primary-text: #1a73e8;
|
410 |
+
--primary-text-light: rgba(26, 115, 232, 0.3);
|
411 |
+
--border-color: #e9ecef;
|
412 |
+
--border-color-light: #f1f3f5;
|
413 |
+
--shadow-color: rgba(0,0,0,0.05);
|
414 |
+
--message-bg-user: #E5F6FD;
|
415 |
+
--message-bg-assistant: #F7F7F8;
|
416 |
+
--message-bg-system: #FFF3E0;
|
417 |
+
--response-bg: #F0F7FF;
|
418 |
+
--score-high: #1a73e8;
|
419 |
+
--score-med: #f4b400;
|
420 |
+
--score-low: #ea4335;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
}
|
422 |
+
|
423 |
+
:root[data-theme="dark"] {
|
424 |
+
--surface-color: #1e1e1e;
|
425 |
+
--surface-color-alt: #2d2d2d;
|
426 |
+
--text-color: #ffffff;
|
427 |
+
--text-muted: #a0a0a0;
|
428 |
+
--primary-text: #60a5fa;
|
429 |
+
--primary-text-light: rgba(96, 165, 250, 0.3);
|
430 |
+
--border-color: #404040;
|
431 |
+
--border-color-light: #333333;
|
432 |
+
--shadow-color: rgba(0,0,0,0.2);
|
433 |
+
--message-bg-user: #2d3748;
|
434 |
+
--message-bg-assistant: #1a1a1a;
|
435 |
+
--message-bg-system: #2c2516;
|
436 |
+
--response-bg: #1e2a3a;
|
437 |
+
--score-high: #60a5fa;
|
438 |
+
--score-med: #fbbf24;
|
439 |
+
--score-low: #ef4444;
|
440 |
+
}
|
441 |
+
|
442 |
+
#exploration-header {
|
443 |
+
margin-bottom: 1.5rem;
|
444 |
+
padding-bottom: 1rem;
|
445 |
+
border-bottom: 1px solid var(--border-color);
|
446 |
+
}
|
447 |
+
|
448 |
+
.filter-container {
|
449 |
+
background-color: var(--surface-color);
|
450 |
+
border-radius: 10px;
|
451 |
+
padding: 1rem;
|
452 |
+
margin-bottom: 1.5rem;
|
453 |
+
border: 1px solid var(--border-color);
|
454 |
+
box-shadow: 0 2px 6px var(--shadow-color);
|
455 |
+
}
|
456 |
+
|
457 |
+
.navigation-buttons button {
|
458 |
+
min-width: 120px;
|
459 |
+
font-weight: 500;
|
460 |
+
}
|
461 |
+
|
462 |
+
.content-panel {
|
463 |
+
margin-top: 1.5rem;
|
464 |
+
}
|
465 |
+
|
466 |
+
@media (max-width: 768px) {
|
467 |
+
.filter-row {
|
468 |
+
flex-direction: column;
|
469 |
+
}
|
470 |
+
}
|
471 |
+
</style>
|
472 |
+
"""
|
473 |
+
)
|
474 |
|
475 |
+
# Header
|
476 |
+
with gr.Row(elem_id="exploration-header"):
|
477 |
+
gr.HTML(HEADER_CONTENT)
|
478 |
+
|
479 |
+
# Filters section
|
480 |
+
with gr.Column(elem_classes="filter-container"):
|
481 |
+
gr.Markdown("### 🔍 Filter Options")
|
482 |
+
|
483 |
+
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
484 |
+
explore_model = gr.Dropdown(
|
485 |
+
choices=MODELS,
|
486 |
+
value=MODELS[0],
|
487 |
+
label="Model",
|
488 |
+
container=True,
|
489 |
+
scale=1,
|
490 |
+
info="Select AI model",
|
491 |
+
)
|
492 |
+
explore_dataset = gr.Dropdown(
|
493 |
+
choices=DATASETS,
|
494 |
+
value=DATASETS[0],
|
495 |
+
label="Dataset",
|
496 |
+
container=True,
|
497 |
+
scale=1,
|
498 |
+
info="Select evaluation dataset",
|
499 |
+
)
|
500 |
|
501 |
+
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
502 |
+
min_score = gr.Slider(
|
503 |
+
minimum=float(min(SCORES)),
|
504 |
+
maximum=float(max(SCORES)),
|
505 |
+
value=float(min(SCORES)),
|
506 |
+
step=0.1,
|
507 |
+
label="Minimum TSQ Score",
|
508 |
+
container=True,
|
509 |
+
scale=1,
|
510 |
+
info="Filter responses with scores above this threshold",
|
511 |
+
)
|
512 |
+
max_score = gr.Slider(
|
513 |
+
minimum=float(min(SCORES)),
|
514 |
+
maximum=float(max(SCORES)),
|
515 |
+
value=float(max(SCORES)),
|
516 |
+
step=0.1,
|
517 |
+
label="Maximum TSQ Score",
|
518 |
+
container=True,
|
519 |
+
scale=1,
|
520 |
+
info="Filter responses with scores below this threshold",
|
521 |
+
)
|
522 |
|
523 |
+
# Get the data for initial ranges
|
524 |
+
df_chat = get_chat_and_score_df(explore_model.value, explore_dataset.value)
|
525 |
+
|
526 |
+
# Ensure columns exist and get ranges
|
527 |
+
n_turns_max = int(df_chat["n_turns"].max())
|
528 |
+
len_query_max = int(df_chat["len_query"].max())
|
529 |
+
n_tools_max = int(df_chat["n_tools"].max())
|
530 |
+
|
531 |
+
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
532 |
+
n_turns_filter = gr.Slider(
|
533 |
+
minimum=0,
|
534 |
+
maximum=n_turns_max,
|
535 |
+
value=0,
|
536 |
+
step=1,
|
537 |
+
label="Minimum Turn Count",
|
538 |
+
container=True,
|
539 |
+
scale=1,
|
540 |
+
info="Filter by minimum number of conversation turns",
|
541 |
+
)
|
542 |
|
543 |
+
len_query_filter = gr.Slider(
|
544 |
+
minimum=0,
|
545 |
+
maximum=len_query_max,
|
546 |
+
value=0,
|
547 |
+
step=10,
|
548 |
+
label="Minimum Query Length",
|
549 |
+
container=True,
|
550 |
+
scale=1,
|
551 |
+
info="Filter by minimum length of query in characters",
|
552 |
+
)
|
553 |
+
|
554 |
+
n_tools_filter = gr.Slider(
|
555 |
+
minimum=0,
|
556 |
+
maximum=n_tools_max,
|
557 |
+
value=0,
|
558 |
+
step=1,
|
559 |
+
label="Minimum Tool Count",
|
560 |
+
container=True,
|
561 |
+
scale=1,
|
562 |
+
info="Filter by minimum number of tools used",
|
563 |
+
)
|
564 |
+
|
565 |
+
with gr.Row():
|
566 |
+
reset_btn = gr.Button("Reset Filters", size="sm", variant="secondary")
|
567 |
+
|
568 |
+
# Navigation row
|
569 |
+
with gr.Row(variant="panel"):
|
570 |
+
with gr.Column(scale=1):
|
571 |
+
prev_btn = gr.Button(
|
572 |
+
"← Previous",
|
573 |
+
size="lg",
|
574 |
+
variant="secondary",
|
575 |
+
elem_classes="navigation-buttons",
|
576 |
+
)
|
577 |
+
|
578 |
+
with gr.Column(scale=1, min_width=100):
|
579 |
+
# Get initial count from default data
|
580 |
+
df_initial = get_chat_and_score_df(MODELS[0], DATASETS[0])
|
581 |
+
initial_count = len(df_initial)
|
582 |
+
|
583 |
+
index_display = gr.HTML(
|
584 |
+
value=f"""<div style="
|
585 |
+
display: flex;
|
586 |
+
align-items: center;
|
587 |
+
justify-content: center;
|
588 |
+
font-weight: 500;
|
589 |
+
color: var(--primary-text);
|
590 |
+
background-color: var(--surface-color-alt);
|
591 |
+
padding: 0.5rem 1rem;
|
592 |
+
border-radius: 20px;
|
593 |
+
font-size: 0.9rem;
|
594 |
+
width: fit-content;
|
595 |
+
margin: 0 auto;">
|
596 |
+
<span style="margin-right: 0.5rem;">📄</span>1/{initial_count}
|
597 |
+
</div>""",
|
598 |
+
elem_id="index-display",
|
599 |
+
)
|
600 |
+
|
601 |
+
with gr.Column(scale=1):
|
602 |
+
next_btn = gr.Button(
|
603 |
+
"Next →",
|
604 |
+
size="lg",
|
605 |
+
variant="secondary",
|
606 |
+
elem_classes="navigation-buttons",
|
607 |
+
)
|
608 |
+
|
609 |
+
# Content areas
|
610 |
+
with gr.Row(equal_height=True):
|
611 |
+
with gr.Column(scale=1):
|
612 |
+
chat_display = gr.HTML()
|
613 |
+
with gr.Column(scale=1):
|
614 |
+
metrics_display = gr.HTML()
|
615 |
|
616 |
with gr.Row():
|
617 |
+
tool_info_display = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
+
# State for tracking current index (simple integer state)
|
620 |
+
current_index = gr.State(value=0)
|
621 |
+
|
622 |
+
def reset_index():
|
623 |
+
"""Reset the current index to 0"""
|
624 |
+
return 0
|
625 |
+
|
626 |
+
# Add these explicit event handlers for model and dataset changes
|
627 |
+
explore_model.change(
|
628 |
+
reset_index,
|
629 |
+
inputs=[],
|
630 |
+
outputs=[current_index],
|
631 |
+
)
|
632 |
+
|
633 |
+
explore_dataset.change(
|
634 |
+
reset_index,
|
635 |
+
inputs=[],
|
636 |
+
outputs=[current_index],
|
637 |
+
)
|
638 |
+
|
639 |
+
min_score.change(
|
640 |
+
reset_index,
|
641 |
+
inputs=[],
|
642 |
+
outputs=[current_index],
|
643 |
+
)
|
644 |
|
645 |
+
max_score.change(
|
646 |
+
reset_index,
|
647 |
+
inputs=[],
|
648 |
+
outputs=[current_index],
|
649 |
+
)
|
650 |
+
|
651 |
+
n_turns_filter.change(
|
652 |
+
reset_index,
|
653 |
+
inputs=[],
|
654 |
+
outputs=[current_index],
|
655 |
+
)
|
656 |
+
|
657 |
+
len_query_filter.change(
|
658 |
+
reset_index,
|
659 |
+
inputs=[],
|
660 |
+
outputs=[current_index],
|
661 |
+
)
|
662 |
+
|
663 |
+
n_tools_filter.change(
|
664 |
+
reset_index,
|
665 |
+
inputs=[],
|
666 |
+
outputs=[current_index],
|
667 |
+
)
|
668 |
+
|
669 |
+
# Reset filters
|
670 |
+
def reset_filters():
|
671 |
+
return (
|
672 |
+
MODELS[0],
|
673 |
+
DATASETS[0],
|
674 |
+
float(min(SCORES)),
|
675 |
+
float(max(SCORES)),
|
676 |
+
0, # n_turns
|
677 |
+
0, # len_query
|
678 |
+
0, # n_tools
|
679 |
)
|
680 |
|
681 |
+
reset_btn.click(
|
682 |
+
reset_filters,
|
683 |
+
outputs=[
|
684 |
+
explore_model,
|
685 |
+
explore_dataset,
|
686 |
+
min_score,
|
687 |
+
max_score,
|
688 |
+
n_turns_filter,
|
689 |
+
len_query_filter,
|
690 |
+
n_tools_filter,
|
691 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
)
|
693 |
|
694 |
+
# Connect filter changes
|
695 |
+
# Replace the existing filter connections with this:
|
696 |
+
for control in [
|
697 |
explore_model,
|
698 |
explore_dataset,
|
699 |
min_score,
|
|
|
701 |
n_turns_filter,
|
702 |
len_query_filter,
|
703 |
n_tools_filter,
|
704 |
+
]:
|
705 |
+
control.change(
|
706 |
+
on_filter_change,
|
707 |
+
inputs=[
|
708 |
+
explore_model,
|
709 |
+
explore_dataset,
|
710 |
+
min_score,
|
711 |
+
max_score,
|
712 |
+
n_turns_filter,
|
713 |
+
len_query_filter,
|
714 |
+
n_tools_filter,
|
715 |
+
],
|
716 |
+
outputs=[
|
717 |
+
chat_display,
|
718 |
+
metrics_display,
|
719 |
+
tool_info_display,
|
720 |
+
index_display,
|
721 |
+
],
|
722 |
+
)
|
723 |
+
|
724 |
+
# Connect navigation buttons with necessary filter parameters
|
725 |
+
prev_btn.click(
|
726 |
+
navigate_prev,
|
727 |
inputs=[
|
728 |
+
current_index,
|
729 |
explore_model,
|
730 |
explore_dataset,
|
731 |
min_score,
|
|
|
739 |
metrics_display,
|
740 |
tool_info_display,
|
741 |
index_display,
|
742 |
+
current_index,
|
743 |
],
|
744 |
)
|
745 |
|
746 |
+
next_btn.click(
|
747 |
+
navigate_next,
|
748 |
+
inputs=[
|
749 |
+
current_index,
|
750 |
+
explore_model,
|
751 |
+
explore_dataset,
|
752 |
+
min_score,
|
753 |
+
max_score,
|
754 |
+
n_turns_filter,
|
755 |
+
len_query_filter,
|
756 |
+
n_tools_filter,
|
757 |
+
],
|
758 |
+
outputs=[
|
759 |
+
chat_display,
|
760 |
+
metrics_display,
|
761 |
+
tool_info_display,
|
762 |
+
index_display,
|
763 |
+
current_index,
|
764 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
)
|
766 |
|
767 |
+
def update_slider_ranges(model, dataset):
|
768 |
+
df_chat = get_chat_and_score_df(model, dataset)
|
769 |
+
|
770 |
+
# Make sure columns are numeric first
|
771 |
+
df_chat["n_turns"] = pd.to_numeric(
|
772 |
+
df_chat["n_turns"], errors="coerce"
|
773 |
+
).fillna(0)
|
774 |
+
df_chat["len_query"] = pd.to_numeric(
|
775 |
+
df_chat["len_query"], errors="coerce"
|
776 |
+
).fillna(0)
|
777 |
+
df_chat["n_tools"] = pd.to_numeric(
|
778 |
+
df_chat["n_tools"], errors="coerce"
|
779 |
+
).fillna(0)
|
780 |
+
|
781 |
+
# Calculate maximums with safety buffers
|
782 |
+
n_turns_max = max(1, int(df_chat["n_turns"].max()))
|
783 |
+
len_query_max = max(10, int(df_chat["len_query"].max()))
|
784 |
+
n_tools_max = max(1, int(df_chat["n_tools"].max()))
|
785 |
+
|
786 |
+
# Return updated sliders using gr.update()
|
787 |
+
return (
|
788 |
+
gr.update(maximum=n_turns_max, value=0),
|
789 |
+
gr.update(maximum=len_query_max, value=0),
|
790 |
+
gr.update(maximum=n_tools_max, value=0),
|
791 |
+
)
|
792 |
|
793 |
+
# Connect model and dataset changes to slider range updates
|
794 |
+
explore_model.change(
|
795 |
+
update_slider_ranges,
|
796 |
+
inputs=[explore_model, explore_dataset],
|
797 |
+
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
798 |
+
)
|
799 |
+
explore_dataset.change(
|
800 |
+
update_slider_ranges,
|
801 |
+
inputs=[explore_model, explore_dataset],
|
802 |
+
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
803 |
)
|
804 |
|
805 |
+
return [
|
806 |
+
chat_display,
|
807 |
+
metrics_display,
|
808 |
+
tool_info_display,
|
809 |
+
index_display,
|
810 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/leaderboard.py
CHANGED
@@ -1,329 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from data_loader import CATEGORIES, DESCRIPTION_HTML, CARDS
|
|
|
|
|
|
|
|
|
4 |
from utils import (
|
5 |
get_rank_badge,
|
6 |
get_score_bar,
|
7 |
get_type_badge,
|
8 |
)
|
9 |
|
10 |
-
from utils import get_chart_colors
|
11 |
-
import matplotlib
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
import numpy as np
|
14 |
-
import plotly.graph_objects as go
|
15 |
-
from plotly.subplots import make_subplots
|
16 |
-
import plotly.express as px
|
17 |
-
from matplotlib.colors import LinearSegmentedColormap
|
18 |
-
|
19 |
-
|
20 |
-
def get_performance_chart(df, category_name="Overall"):
|
21 |
-
plt.close("all")
|
22 |
-
score_column = "Category Score"
|
23 |
-
# Sort in ascending order (lowest scores at top, highest at bottom) to match the screenshot
|
24 |
-
df_sorted = df.sort_values(score_column, ascending=True)
|
25 |
-
|
26 |
-
# Create a Plotly figure
|
27 |
-
fig = go.Figure()
|
28 |
-
|
29 |
-
# Define colors for model types - these match the image exactly
|
30 |
-
color_map = {
|
31 |
-
"Private": "#4a9bf7", # Blue for closed source
|
32 |
-
"Open source": "#b56ad7", # Purple for open source
|
33 |
-
}
|
34 |
-
|
35 |
-
# Add horizontal bars
|
36 |
-
for i, row in df_sorted.iterrows():
|
37 |
-
model_type = row["Model Type"]
|
38 |
-
|
39 |
-
fig.add_trace(
|
40 |
-
go.Bar(
|
41 |
-
x=[row[score_column]],
|
42 |
-
y=[row["Model"] + " "],
|
43 |
-
orientation="h",
|
44 |
-
marker=dict(
|
45 |
-
color=color_map[model_type],
|
46 |
-
line=dict(width=0),
|
47 |
-
),
|
48 |
-
text=f"{row[score_column]:.3f}",
|
49 |
-
textposition="outside",
|
50 |
-
textfont=dict(
|
51 |
-
size=16, color="white", family="Arial, sans-serif"
|
52 |
-
), # Improved visibility
|
53 |
-
hoverinfo="text",
|
54 |
-
hovertext=f"{row['Model']}: {row[score_column]:.3f}",
|
55 |
-
showlegend=False,
|
56 |
-
width=0.65, # Make bars thinner for cleaner appearance
|
57 |
-
)
|
58 |
-
)
|
59 |
-
|
60 |
-
# Create a custom legend
|
61 |
-
for model_type, color in color_map.items():
|
62 |
-
display_name = "Closed source" if model_type == "Private" else model_type
|
63 |
-
fig.add_trace(
|
64 |
-
go.Bar(
|
65 |
-
x=[None],
|
66 |
-
y=[None],
|
67 |
-
orientation="h",
|
68 |
-
marker=dict(color=color),
|
69 |
-
showlegend=True,
|
70 |
-
name=display_name,
|
71 |
-
)
|
72 |
-
)
|
73 |
-
|
74 |
-
# Theme colors - will be set by CSS
|
75 |
-
plot_bg = "rgb(25, 28, 38)" # Default dark theme
|
76 |
-
paper_bg = "rgb(25, 28, 38)"
|
77 |
-
text_color = "white"
|
78 |
-
grid_color = "rgba(150, 150, 150, 0.2)"
|
79 |
-
legend_bg = "rgba(25, 28, 38, 0.7)"
|
80 |
-
|
81 |
-
# Calculate a generous height based on the number of items
|
82 |
-
# Use a minimum height and a larger per-item height factor
|
83 |
-
min_height = 600
|
84 |
-
height_per_item = 50 # Increased spacing between bars
|
85 |
-
chart_height = max(min_height, len(df_sorted) * height_per_item)
|
86 |
-
|
87 |
-
fig.update_layout(
|
88 |
-
title=dict(
|
89 |
-
text=f"Ranking - {category_name}",
|
90 |
-
font=dict(size=28, color=text_color),
|
91 |
-
x=0.5,
|
92 |
-
y=0.98,
|
93 |
-
xanchor="center",
|
94 |
-
),
|
95 |
-
xaxis=dict(
|
96 |
-
title=dict(
|
97 |
-
text="Average Score (Tool Selection Quality)",
|
98 |
-
font=dict(size=16, color=text_color),
|
99 |
-
),
|
100 |
-
range=[0, 1.05],
|
101 |
-
gridcolor=grid_color,
|
102 |
-
gridwidth=1,
|
103 |
-
tickfont=dict(size=16, color=text_color),
|
104 |
-
zeroline=False,
|
105 |
-
tickformat=".1f",
|
106 |
-
showgrid=True,
|
107 |
-
dtick=0.2, # Set tick spacing to match image
|
108 |
-
),
|
109 |
-
yaxis=dict(
|
110 |
-
tickfont=dict(size=16, color=text_color),
|
111 |
-
automargin=True,
|
112 |
-
),
|
113 |
-
margin=dict(l=30, r=50, t=100, b=80),
|
114 |
-
height=chart_height,
|
115 |
-
autosize=True, # Enable autosize for responsiveness
|
116 |
-
bargap=0.15,
|
117 |
-
bargroupgap=0.1,
|
118 |
-
barmode="group",
|
119 |
-
legend=dict(
|
120 |
-
title=dict(text="Model Type", font=dict(size=18, color=text_color)),
|
121 |
-
font=dict(size=16, color=text_color),
|
122 |
-
x=0.4,
|
123 |
-
y=-0.15,
|
124 |
-
xanchor="center",
|
125 |
-
yanchor="top",
|
126 |
-
orientation="h",
|
127 |
-
bgcolor=legend_bg,
|
128 |
-
),
|
129 |
-
plot_bgcolor=plot_bg,
|
130 |
-
paper_bgcolor=paper_bg,
|
131 |
-
font=dict(color=text_color),
|
132 |
-
)
|
133 |
-
|
134 |
-
# Add grid lines that match the image
|
135 |
-
for x in [0.2, 0.4, 0.6, 0.8]:
|
136 |
-
fig.add_shape(
|
137 |
-
type="line",
|
138 |
-
x0=x,
|
139 |
-
y0=0,
|
140 |
-
x1=x,
|
141 |
-
y1=1,
|
142 |
-
yref="paper",
|
143 |
-
line=dict(color=grid_color, width=1),
|
144 |
-
)
|
145 |
-
|
146 |
-
return fig
|
147 |
-
|
148 |
-
|
149 |
-
def get_performance_cost_chart(df, category_name="Overall"):
|
150 |
-
plt.close("all")
|
151 |
-
score_column = "Category Score"
|
152 |
-
|
153 |
-
# Create a Plotly figure
|
154 |
-
fig = go.Figure()
|
155 |
-
|
156 |
-
# Define colors for model types
|
157 |
-
color_map = {
|
158 |
-
"Private": "#4a9bf7", # Blue for closed source
|
159 |
-
"Open source": "#b56ad7", # Purple for open source
|
160 |
-
}
|
161 |
-
|
162 |
-
# Dark theme colors
|
163 |
-
plot_bg = "rgb(25, 28, 38)"
|
164 |
-
paper_bg = "rgb(25, 28, 38)"
|
165 |
-
text_color = "white"
|
166 |
-
grid_color = "rgba(150, 150, 150, 0.2)"
|
167 |
-
legend_bg = "rgba(25, 28, 38, 0.7)"
|
168 |
-
|
169 |
-
# Add scatter points for each model
|
170 |
-
for _, row in df.iterrows():
|
171 |
-
model_type = row["Model Type"]
|
172 |
-
|
173 |
-
# Add model point
|
174 |
-
fig.add_trace(
|
175 |
-
go.Scatter(
|
176 |
-
x=[row["IO Cost"]],
|
177 |
-
y=[row[score_column] * 100], # Convert to percentage scale
|
178 |
-
mode="markers",
|
179 |
-
marker=dict(
|
180 |
-
color=color_map[model_type],
|
181 |
-
size=15,
|
182 |
-
line=dict(width=1, color="white"),
|
183 |
-
opacity=0.9,
|
184 |
-
),
|
185 |
-
name=row["Model"],
|
186 |
-
text=f"{row['Model']}<br>${row['IO Cost']:.2f}<br>{row[score_column]:.3f}",
|
187 |
-
hoverinfo="text",
|
188 |
-
showlegend=False,
|
189 |
-
)
|
190 |
-
)
|
191 |
-
|
192 |
-
# Add model label
|
193 |
-
fig.add_trace(
|
194 |
-
go.Scatter(
|
195 |
-
x=[row["IO Cost"]],
|
196 |
-
y=[row[score_column] * 100 + 0.8],
|
197 |
-
mode="text",
|
198 |
-
text=row["Model"], # + f" (${row['IO Cost']:.2f})",
|
199 |
-
textposition="top center",
|
200 |
-
textfont=dict(color=text_color, size=10),
|
201 |
-
hoverinfo="none",
|
202 |
-
showlegend=False,
|
203 |
-
)
|
204 |
-
)
|
205 |
-
|
206 |
-
# Create a custom legend
|
207 |
-
for model_type, color in color_map.items():
|
208 |
-
display_name = "Closed source" if model_type == "Private" else model_type
|
209 |
-
fig.add_trace(
|
210 |
-
go.Scatter(
|
211 |
-
x=[None],
|
212 |
-
y=[None],
|
213 |
-
mode="markers",
|
214 |
-
marker=dict(color=color, size=10, line=dict(width=1, color="white")),
|
215 |
-
name=display_name,
|
216 |
-
)
|
217 |
-
)
|
218 |
-
|
219 |
-
# Add performance bands
|
220 |
-
performance_bands = [
|
221 |
-
{
|
222 |
-
"range": [85, 100],
|
223 |
-
"color": "rgba(52, 211, 153, 0.2)",
|
224 |
-
"label": "Reliable Zone",
|
225 |
-
},
|
226 |
-
{"range": [75, 85], "color": "rgba(251, 191, 36, 0.2)", "label": "Good Zone"},
|
227 |
-
{"range": [60, 75], "color": "rgba(239, 68, 68, 0.2)", "label": "Risky Zone"},
|
228 |
-
]
|
229 |
-
|
230 |
-
for band in performance_bands:
|
231 |
-
fig.add_trace(
|
232 |
-
go.Scatter(
|
233 |
-
x=[0.05, 100],
|
234 |
-
y=[band["range"][0], band["range"][0]],
|
235 |
-
mode="lines",
|
236 |
-
line=dict(color="rgba(255, 255, 255, 0.3)", width=1, dash="dash"),
|
237 |
-
showlegend=False,
|
238 |
-
)
|
239 |
-
)
|
240 |
-
|
241 |
-
fig.add_shape(
|
242 |
-
type="rect",
|
243 |
-
x0=0.08,
|
244 |
-
x1=1000,
|
245 |
-
y0=band["range"][0],
|
246 |
-
y1=band["range"][1],
|
247 |
-
fillcolor=band["color"],
|
248 |
-
line=dict(width=0),
|
249 |
-
layer="below",
|
250 |
-
)
|
251 |
-
|
252 |
-
# Update layout
|
253 |
-
fig.update_layout(
|
254 |
-
title=dict(
|
255 |
-
text=f"Performance vs. Cost - {category_name}",
|
256 |
-
font=dict(size=28, color=text_color),
|
257 |
-
x=0.5,
|
258 |
-
y=0.98,
|
259 |
-
xanchor="center",
|
260 |
-
),
|
261 |
-
xaxis=dict(
|
262 |
-
title=dict(
|
263 |
-
text="I/O Cost per Million Tokens ($)",
|
264 |
-
font=dict(size=14, color=text_color),
|
265 |
-
),
|
266 |
-
type="log",
|
267 |
-
range=[-1.2, 2.1], # log10 scale from 0.08 to 100
|
268 |
-
gridcolor=grid_color,
|
269 |
-
gridwidth=1,
|
270 |
-
tickfont=dict(size=12, color=text_color),
|
271 |
-
zeroline=False,
|
272 |
-
showgrid=True,
|
273 |
-
),
|
274 |
-
yaxis=dict(
|
275 |
-
title=dict(
|
276 |
-
text="Average Score (Tool Selection Quality)",
|
277 |
-
font=dict(size=14, color=text_color),
|
278 |
-
),
|
279 |
-
range=[60, 100],
|
280 |
-
gridcolor=grid_color,
|
281 |
-
gridwidth=1,
|
282 |
-
tickfont=dict(size=12, color=text_color),
|
283 |
-
zeroline=False,
|
284 |
-
showgrid=True,
|
285 |
-
),
|
286 |
-
margin=dict(l=20, r=20, t=80, b=80), # Increased bottom margin for legend
|
287 |
-
autosize=True,
|
288 |
-
height=900, # Increased height
|
289 |
-
# width=1600,
|
290 |
-
legend=dict(
|
291 |
-
title=dict(text="Model Type", font=dict(size=14, color=text_color)),
|
292 |
-
font=dict(size=12, color=text_color),
|
293 |
-
x=0.5,
|
294 |
-
y=-0.15,
|
295 |
-
xanchor="center",
|
296 |
-
yanchor="top",
|
297 |
-
orientation="h",
|
298 |
-
bgcolor=legend_bg,
|
299 |
-
),
|
300 |
-
plot_bgcolor=plot_bg,
|
301 |
-
paper_bgcolor=paper_bg,
|
302 |
-
font=dict(color=text_color),
|
303 |
-
hovermode="closest",
|
304 |
-
)
|
305 |
-
|
306 |
-
# Add annotations for performance bands
|
307 |
-
for i, band in enumerate(performance_bands):
|
308 |
-
fig.add_annotation(
|
309 |
-
x=1.5,
|
310 |
-
y=(band["range"][0] + band["range"][1]) / 2 + 3,
|
311 |
-
text=band["label"],
|
312 |
-
showarrow=False,
|
313 |
-
font=dict(size=15, color=text_color),
|
314 |
-
xanchor="left",
|
315 |
-
yanchor="middle",
|
316 |
-
xshift=5,
|
317 |
-
)
|
318 |
-
|
319 |
-
# Keep only dark theme - remove theme detection and switching
|
320 |
-
fig.update_layout(
|
321 |
-
autosize=True,
|
322 |
-
)
|
323 |
-
|
324 |
-
return fig
|
325 |
-
|
326 |
-
|
327 |
def filter_leaderboard(df, model_type, category, sort_by):
|
328 |
filtered_df = df.copy()
|
329 |
if model_type != "All":
|
@@ -338,14 +25,9 @@ def filter_leaderboard(df, model_type, category, sort_by):
|
|
338 |
filtered_df = filtered_df.sort_values(by="IO Cost", ascending=True)
|
339 |
|
340 |
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
341 |
-
|
342 |
-
# Get charts
|
343 |
perf_chart = get_performance_chart(filtered_df, category)
|
344 |
cost_chart = get_performance_cost_chart(filtered_df, category)
|
345 |
|
346 |
-
# Don't override the chart settings here - this was causing conflicts
|
347 |
-
# The responsiveness is now handled in the chart creation functions
|
348 |
-
|
349 |
# Generate styled table HTML
|
350 |
table_html = f"""
|
351 |
<style>
|
@@ -470,240 +152,55 @@ def filter_leaderboard(df, model_type, category, sort_by):
|
|
470 |
</tr>
|
471 |
"""
|
472 |
|
473 |
-
table_html += """
|
474 |
-
</tbody>
|
475 |
-
</table>
|
476 |
-
</div>
|
477 |
-
"""
|
478 |
-
|
479 |
return table_html, perf_chart, cost_chart
|
480 |
|
481 |
|
482 |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
font-size: 14px !important;
|
521 |
-
}
|
522 |
-
|
523 |
-
/* Responsive adjustments */
|
524 |
-
@media (max-width: 768px) {
|
525 |
-
.js-plotly-plot text {
|
526 |
-
font-size: 12px !important;
|
527 |
-
}
|
528 |
-
}
|
529 |
-
|
530 |
-
/* Apply font styling to non-title text elements */
|
531 |
-
.js-plotly-plot text:not(.gtitle) {
|
532 |
-
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif !important;
|
533 |
-
font-size: 14px !important;
|
534 |
-
}
|
535 |
-
|
536 |
-
/* Specific styling for chart titles */
|
537 |
-
.js-plotly-plot .gtitle {
|
538 |
-
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif !important;
|
539 |
-
font-size: 28px !important;
|
540 |
-
}
|
541 |
-
</style>
|
542 |
-
"""
|
543 |
-
|
544 |
-
# Start content directly
|
545 |
-
gr.HTML(HEADER_CONTENT + CARDS)
|
546 |
-
gr.HTML(DESCRIPTION_HTML)
|
547 |
|
548 |
-
|
549 |
-
gr.HTML(chart_container_css)
|
550 |
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
value="All",
|
557 |
-
label="Model Type",
|
558 |
-
)
|
559 |
-
with gr.Column(scale=1):
|
560 |
-
category = gr.Dropdown(
|
561 |
-
choices=list(CATEGORIES.keys()),
|
562 |
-
value=list(CATEGORIES.keys())[0],
|
563 |
-
label="Category",
|
564 |
-
)
|
565 |
-
with gr.Column(scale=1):
|
566 |
-
sort_by = gr.Radio(
|
567 |
-
choices=["Performance", "Cost"],
|
568 |
-
value="Performance",
|
569 |
-
label="Sort by",
|
570 |
)
|
571 |
|
572 |
-
|
573 |
-
output = gr.HTML()
|
574 |
-
|
575 |
-
# Performance chart - don't specify height in HTML
|
576 |
-
with gr.Row():
|
577 |
-
with gr.Column():
|
578 |
-
gr.HTML('<div class="chart-container">')
|
579 |
-
plot1 = gr.Plot(elem_id="plot1")
|
580 |
-
gr.HTML("</div>")
|
581 |
-
|
582 |
-
# Cost performance chart - don't specify height in HTML
|
583 |
-
with gr.Row():
|
584 |
-
with gr.Column():
|
585 |
-
gr.HTML('<div class="chart-container">')
|
586 |
-
plot2 = gr.Plot(elem_id="plot2")
|
587 |
-
gr.HTML("</div>")
|
588 |
-
|
589 |
-
gr.HTML(
|
590 |
-
"""<div class="note-box">
|
591 |
-
<p style="margin: 0; font-size: 1em;">
|
592 |
-
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation.
|
593 |
-
</p>
|
594 |
-
</div>"""
|
595 |
-
)
|
596 |
-
|
597 |
-
gr.HTML(METHODOLOGY)
|
598 |
-
|
599 |
-
# Enhanced resize script - improved to be more responsive
|
600 |
-
resize_js = """
|
601 |
-
<script>
|
602 |
-
// Improved function to handle responsive Plotly charts
|
603 |
-
function resizePlots() {
|
604 |
-
// Find all plot containers
|
605 |
-
const plotContainers = document.querySelectorAll('.js-plotly-plot');
|
606 |
-
if (!plotContainers.length) {
|
607 |
-
// If containers aren't ready yet, retry shortly
|
608 |
-
setTimeout(resizePlots, 100);
|
609 |
-
return;
|
610 |
-
}
|
611 |
-
|
612 |
-
// Get the available width for the container
|
613 |
-
const containerWidth = document.querySelector('.chart-container').offsetWidth;
|
614 |
-
|
615 |
-
plotContainers.forEach(container => {
|
616 |
-
// Calculate appropriate dimensions based on container width
|
617 |
-
let containerHeight;
|
618 |
-
|
619 |
-
// Different height calculation based on chart type
|
620 |
-
if (container.id.includes('plot1')) {
|
621 |
-
// Performance chart - use sizing from reference code
|
622 |
-
const barCount = container.querySelectorAll('.bars .point').length || 20; // Default if can't detect
|
623 |
-
// Convert from matplotlib sizing approach: height = max(8, len(df_sorted) * 0.8) in inches * pixels per inch
|
624 |
-
const heightInInches = Math.max(8, barCount * 0.8);
|
625 |
-
containerHeight = heightInInches * 80; // Convert inches to pixels (approx)
|
626 |
-
} else {
|
627 |
-
// Cost chart - use fixed size from reference code (12x8 inches)
|
628 |
-
containerHeight = 640; // 8 inches * 80 pixels per inch
|
629 |
-
// Keep width proportional to container up to max width
|
630 |
-
const maxWidth = 960; // 12 inches * 80 pixels per inch
|
631 |
-
container.style.maxWidth = maxWidth + 'px';
|
632 |
-
}
|
633 |
-
|
634 |
-
// Apply dimensions
|
635 |
-
container.style.width = '100%';
|
636 |
-
container.style.height = containerHeight + 'px';
|
637 |
-
|
638 |
-
// Find and resize the SVG elements
|
639 |
-
const svgElements = container.querySelectorAll('svg');
|
640 |
-
svgElements.forEach(svg => {
|
641 |
-
svg.style.width = '100%';
|
642 |
-
svg.style.height = containerHeight + 'px';
|
643 |
-
});
|
644 |
-
|
645 |
-
// Find the main SVG container and resize it
|
646 |
-
const svgContainer = container.querySelector('.svg-container');
|
647 |
-
if (svgContainer) {
|
648 |
-
svgContainer.style.width = '100%';
|
649 |
-
svgContainer.style.height = containerHeight + 'px';
|
650 |
-
}
|
651 |
-
});
|
652 |
-
|
653 |
-
// Trigger window resize to make Plotly redraw
|
654 |
-
window.dispatchEvent(new Event('resize'));
|
655 |
-
}
|
656 |
-
|
657 |
-
// Functions to run when content changes or window resizes
|
658 |
-
function setupResizeHandlers() {
|
659 |
-
// Initial resize
|
660 |
-
resizePlots();
|
661 |
-
|
662 |
-
// Handle window resize
|
663 |
-
window.addEventListener('resize', function() {
|
664 |
-
resizePlots();
|
665 |
-
});
|
666 |
-
|
667 |
-
// Set up a mutation observer to detect when plots are added/changed
|
668 |
-
const observer = new MutationObserver(function(mutations) {
|
669 |
-
mutations.forEach(function(mutation) {
|
670 |
-
if (mutation.addedNodes.length ||
|
671 |
-
mutation.type === 'attributes' &&
|
672 |
-
mutation.target.classList.contains('js-plotly-plot')) {
|
673 |
-
resizePlots();
|
674 |
-
}
|
675 |
-
});
|
676 |
-
});
|
677 |
-
|
678 |
-
// Observe the entire document for changes
|
679 |
-
observer.observe(document.body, {
|
680 |
-
childList: true,
|
681 |
-
subtree: true,
|
682 |
-
attributes: true,
|
683 |
-
attributeFilter: ['style', 'class']
|
684 |
-
});
|
685 |
-
}
|
686 |
-
|
687 |
-
// Run when DOM is fully loaded
|
688 |
-
if (document.readyState === 'loading') {
|
689 |
-
document.addEventListener('DOMContentLoaded', setupResizeHandlers);
|
690 |
-
} else {
|
691 |
-
setupResizeHandlers();
|
692 |
-
}
|
693 |
-
|
694 |
-
// Also resize periodically for a bit after initial load to ensure everything renders properly
|
695 |
-
for (let i = 1; i <= 10; i++) {
|
696 |
-
setTimeout(resizePlots, i * 500);
|
697 |
-
}
|
698 |
-
</script>
|
699 |
-
"""
|
700 |
-
gr.HTML(resize_js)
|
701 |
-
|
702 |
-
for input_comp in [model_type, category, sort_by]:
|
703 |
-
input_comp.change(
|
704 |
-
fn=lambda m, c, s: filter_leaderboard(df, m, c, s),
|
705 |
-
inputs=[model_type, category, sort_by],
|
706 |
-
outputs=[output, plot1, plot2],
|
707 |
-
)
|
708 |
-
|
709 |
-
return output, plot1, plot2
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from data_loader import CATEGORIES, DESCRIPTION_HTML, CARDS
|
4 |
+
from visualization import (
|
5 |
+
get_performance_chart,
|
6 |
+
get_performance_cost_chart,
|
7 |
+
)
|
8 |
from utils import (
|
9 |
get_rank_badge,
|
10 |
get_score_bar,
|
11 |
get_type_badge,
|
12 |
)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def filter_leaderboard(df, model_type, category, sort_by):
|
15 |
filtered_df = df.copy()
|
16 |
if model_type != "All":
|
|
|
25 |
filtered_df = filtered_df.sort_values(by="IO Cost", ascending=True)
|
26 |
|
27 |
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
|
|
|
|
28 |
perf_chart = get_performance_chart(filtered_df, category)
|
29 |
cost_chart = get_performance_cost_chart(filtered_df, category)
|
30 |
|
|
|
|
|
|
|
31 |
# Generate styled table HTML
|
32 |
table_html = f"""
|
33 |
<style>
|
|
|
152 |
</tr>
|
153 |
"""
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
return table_html, perf_chart, cost_chart
|
156 |
|
157 |
|
158 |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
159 |
+
with gr.Tab("Leaderboard"):
|
160 |
+
gr.HTML(HEADER_CONTENT + CARDS)
|
161 |
+
gr.HTML(DESCRIPTION_HTML)
|
162 |
+
|
163 |
+
# Filters row
|
164 |
+
with gr.Row(equal_height=True):
|
165 |
+
with gr.Column(scale=1):
|
166 |
+
model_type = gr.Dropdown(
|
167 |
+
choices=["All"] + df["Model Type"].unique().tolist(),
|
168 |
+
value="All",
|
169 |
+
label="Model Type",
|
170 |
+
)
|
171 |
+
with gr.Column(scale=1):
|
172 |
+
category = gr.Dropdown(
|
173 |
+
choices=list(CATEGORIES.keys()),
|
174 |
+
value=list(CATEGORIES.keys())[0],
|
175 |
+
label="Category",
|
176 |
+
)
|
177 |
+
with gr.Column(scale=1):
|
178 |
+
sort_by = gr.Radio(
|
179 |
+
choices=["Performance", "Cost"],
|
180 |
+
value="Performance",
|
181 |
+
label="Sort by",
|
182 |
+
)
|
183 |
+
|
184 |
+
# Content
|
185 |
+
output = gr.HTML()
|
186 |
+
plot1 = gr.Plot()
|
187 |
+
plot2 = gr.Plot()
|
188 |
+
|
189 |
+
gr.HTML(
|
190 |
+
"""<div class="note-box">
|
191 |
+
<p style="margin: 0; font-size: 1em;">
|
192 |
+
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation.
|
193 |
+
</p>
|
194 |
+
</div>"""
|
195 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
gr.HTML(METHODOLOGY)
|
|
|
198 |
|
199 |
+
for input_comp in [model_type, category, sort_by]:
|
200 |
+
input_comp.change(
|
201 |
+
fn=lambda m, c, s: filter_leaderboard(df, m, c, s),
|
202 |
+
inputs=[model_type, category, sort_by],
|
203 |
+
outputs=[output, plot1, plot2],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
|
206 |
+
return output, plot1, plot2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/model_comparison.py
CHANGED
@@ -1,96 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
import matplotlib
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import numpy as np
|
6 |
-
import plotly.graph_objects as go
|
7 |
-
from plotly.subplots import make_subplots
|
8 |
-
import plotly.express as px
|
9 |
-
from matplotlib.colors import LinearSegmentedColormap
|
10 |
-
|
11 |
-
|
12 |
-
def create_radar_plot(df, model_names):
|
13 |
-
datasets = [col for col in df.columns[7:] if col != "IO Cost"]
|
14 |
-
fig = go.Figure()
|
15 |
-
|
16 |
-
# Dark theme colors - match other charts
|
17 |
-
plot_bg = "rgb(25, 28, 38)"
|
18 |
-
paper_bg = "rgb(25, 28, 38)"
|
19 |
-
text_color = "white"
|
20 |
-
grid_color = "rgba(150, 150, 150, 0.2)"
|
21 |
-
legend_bg = "rgba(25, 28, 38, 0.7)"
|
22 |
-
|
23 |
-
# Update colors for dark theme - more vibrant with better contrast
|
24 |
-
colors = [
|
25 |
-
"rgba(74, 155, 247, 0.3)",
|
26 |
-
"rgba(181, 106, 215, 0.3)",
|
27 |
-
] # Match color_map from other charts
|
28 |
-
line_colors = ["#4a9bf7", "#b56ad7"] # Match color_map from other charts
|
29 |
-
|
30 |
-
for idx, model_name in enumerate(model_names):
|
31 |
-
model_data = df[df["Model"] == model_name].iloc[0]
|
32 |
-
values = [model_data[m] for m in datasets]
|
33 |
-
values.append(values[0])
|
34 |
-
datasets_plot = datasets + [datasets[0]]
|
35 |
-
|
36 |
-
fig.add_trace(
|
37 |
-
go.Scatterpolar(
|
38 |
-
r=values,
|
39 |
-
theta=datasets_plot,
|
40 |
-
fill="toself",
|
41 |
-
fillcolor=colors[idx % len(colors)],
|
42 |
-
line=dict(color=line_colors[idx % len(line_colors)], width=2),
|
43 |
-
name=model_name,
|
44 |
-
text=[f"{val:.3f}" for val in values],
|
45 |
-
textposition="middle right",
|
46 |
-
mode="lines+markers+text",
|
47 |
-
textfont=dict(color=text_color), # Set text color to match theme
|
48 |
-
)
|
49 |
-
)
|
50 |
-
|
51 |
-
# Create a more balanced layout optimized for Gradio display
|
52 |
-
fig.update_layout(
|
53 |
-
polar=dict(
|
54 |
-
radialaxis=dict(
|
55 |
-
visible=True,
|
56 |
-
range=[0, 1],
|
57 |
-
showline=False,
|
58 |
-
tickfont=dict(size=12, color=text_color),
|
59 |
-
gridcolor=grid_color,
|
60 |
-
),
|
61 |
-
angularaxis=dict(
|
62 |
-
tickfont=dict(size=13, color=text_color),
|
63 |
-
rotation=90,
|
64 |
-
direction="clockwise",
|
65 |
-
gridcolor=grid_color,
|
66 |
-
),
|
67 |
-
bgcolor=plot_bg, # Set polar background color
|
68 |
-
),
|
69 |
-
showlegend=True,
|
70 |
-
legend=dict(
|
71 |
-
orientation="h",
|
72 |
-
yanchor="bottom",
|
73 |
-
y=-0.15,
|
74 |
-
xanchor="center",
|
75 |
-
x=0.5,
|
76 |
-
font=dict(size=14, color=text_color),
|
77 |
-
bgcolor=legend_bg,
|
78 |
-
),
|
79 |
-
title=dict(
|
80 |
-
text="Model Comparison",
|
81 |
-
x=0.5,
|
82 |
-
y=0.98,
|
83 |
-
font=dict(size=24, color=text_color),
|
84 |
-
),
|
85 |
-
paper_bgcolor=paper_bg,
|
86 |
-
plot_bgcolor=plot_bg,
|
87 |
-
height=700,
|
88 |
-
width=1200, # Make it perfectly square
|
89 |
-
margin=dict(l=0, r=0, t=80, b=80), # Remove horizontal margins completely
|
90 |
-
font=dict(color=text_color),
|
91 |
-
)
|
92 |
-
|
93 |
-
return fig
|
94 |
|
95 |
|
96 |
def compare_models(df, model_names=None):
|
@@ -139,29 +48,26 @@ def compare_models(df, model_names=None):
|
|
139 |
|
140 |
|
141 |
def create_model_comparison_tab(df, HEADER_CONTENT):
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
inputs=[model_selector],
|
164 |
-
outputs=[model_info, radar_plot],
|
165 |
-
)
|
166 |
|
167 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from visualization import create_radar_plot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
def compare_models(df, model_names=None):
|
|
|
48 |
|
49 |
|
50 |
def create_model_comparison_tab(df, HEADER_CONTENT):
|
51 |
+
with gr.Tab("Model Comparison"):
|
52 |
+
gr.HTML(HEADER_CONTENT)
|
53 |
+
with gr.Column():
|
54 |
+
# Filters row
|
55 |
+
with gr.Row(equal_height=True):
|
56 |
+
model_selector = gr.Dropdown(
|
57 |
+
choices=df["Model"].unique().tolist(),
|
58 |
+
value=df.sort_values("Model Avg", ascending=False).iloc[0]["Model"],
|
59 |
+
multiselect=True,
|
60 |
+
label="Select Models to Compare",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Content
|
64 |
+
model_info = gr.HTML()
|
65 |
+
radar_plot = gr.Plot()
|
66 |
+
|
67 |
+
model_selector.change(
|
68 |
+
fn=lambda m: compare_models(df, m),
|
69 |
+
inputs=[model_selector],
|
70 |
+
outputs=[model_info, radar_plot],
|
71 |
+
)
|
|
|
|
|
|
|
72 |
|
73 |
+
return model_info, radar_plot
|
visualization.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils import get_chart_colors
|
2 |
+
import matplotlib
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
|
8 |
+
def setup_matplotlib():
|
9 |
+
matplotlib.use("Agg")
|
10 |
+
plt.close("all")
|
11 |
+
|
12 |
+
|
13 |
+
def get_performance_chart(df, category_name="Overall"):
|
14 |
+
plt.close("all")
|
15 |
+
colors = get_chart_colors()
|
16 |
+
score_column = "Category Score"
|
17 |
+
df_sorted = df.sort_values(score_column, ascending=True)
|
18 |
+
|
19 |
+
height = max(8, len(df_sorted) * 0.8)
|
20 |
+
fig, ax = plt.subplots(figsize=(16, height))
|
21 |
+
plt.rcParams.update({"font.size": 12})
|
22 |
+
|
23 |
+
fig.patch.set_facecolor(colors["background"])
|
24 |
+
ax.set_facecolor(colors["background"])
|
25 |
+
|
26 |
+
try:
|
27 |
+
bars = ax.barh(
|
28 |
+
np.arange(len(df_sorted)),
|
29 |
+
df_sorted[score_column],
|
30 |
+
height=0.4,
|
31 |
+
capstyle="round",
|
32 |
+
color=[colors[t] for t in df_sorted["Model Type"]],
|
33 |
+
)
|
34 |
+
|
35 |
+
ax.set_title(
|
36 |
+
f"Model Performance - {category_name}",
|
37 |
+
pad=20,
|
38 |
+
fontsize=20,
|
39 |
+
fontweight="bold",
|
40 |
+
color=colors["text"],
|
41 |
+
)
|
42 |
+
ax.set_xlabel(
|
43 |
+
"Average Score (Tool Selection Quality)",
|
44 |
+
fontsize=14,
|
45 |
+
fontweight="bold",
|
46 |
+
labelpad=10,
|
47 |
+
color=colors["text"],
|
48 |
+
)
|
49 |
+
ax.set_xlim(0.0, 1.0)
|
50 |
+
|
51 |
+
ax.set_yticks(np.arange(len(df_sorted)))
|
52 |
+
ax.set_yticklabels(
|
53 |
+
df_sorted["Model"], fontsize=12, fontweight="bold", color=colors["text"]
|
54 |
+
)
|
55 |
+
|
56 |
+
plt.subplots_adjust(left=0.35)
|
57 |
+
|
58 |
+
for i, v in enumerate(df_sorted[score_column]):
|
59 |
+
ax.text(
|
60 |
+
v + 0.01,
|
61 |
+
i,
|
62 |
+
f"{v:.3f}",
|
63 |
+
va="center",
|
64 |
+
fontsize=12,
|
65 |
+
fontweight="bold",
|
66 |
+
color=colors["text"],
|
67 |
+
)
|
68 |
+
|
69 |
+
ax.grid(True, axis="x", linestyle="--", alpha=0.2, color=colors["grid"])
|
70 |
+
ax.spines[["top", "right"]].set_visible(False)
|
71 |
+
ax.spines[["bottom", "left"]].set_color(colors["grid"])
|
72 |
+
ax.tick_params(colors=colors["text"])
|
73 |
+
|
74 |
+
legend_elements = [
|
75 |
+
plt.Rectangle((0, 0), 1, 1, facecolor=color, label=label)
|
76 |
+
for label, color in {
|
77 |
+
k: colors[k] for k in ["Private", "Open source"]
|
78 |
+
}.items()
|
79 |
+
]
|
80 |
+
ax.legend(
|
81 |
+
handles=legend_elements,
|
82 |
+
title="Model Type",
|
83 |
+
loc="lower right",
|
84 |
+
fontsize=12,
|
85 |
+
title_fontsize=14,
|
86 |
+
facecolor=colors["background"],
|
87 |
+
labelcolor=colors["text"],
|
88 |
+
)
|
89 |
+
|
90 |
+
plt.tight_layout()
|
91 |
+
return fig
|
92 |
+
finally:
|
93 |
+
plt.close(fig)
|
94 |
+
|
95 |
+
def create_radar_plot(df, model_names):
|
96 |
+
datasets = [col for col in df.columns[7:] if col != "IO Cost"]
|
97 |
+
fig = go.Figure()
|
98 |
+
|
99 |
+
colors = ["rgba(99, 102, 241, 0.3)", "rgba(34, 197, 94, 0.3)"]
|
100 |
+
line_colors = ["#4F46E5", "#16A34A"]
|
101 |
+
|
102 |
+
for idx, model_name in enumerate(model_names):
|
103 |
+
model_data = df[df["Model"] == model_name].iloc[0]
|
104 |
+
values = [model_data[m] for m in datasets]
|
105 |
+
values.append(values[0])
|
106 |
+
datasets_plot = datasets + [datasets[0]]
|
107 |
+
|
108 |
+
fig.add_trace(
|
109 |
+
go.Scatterpolar(
|
110 |
+
r=values,
|
111 |
+
theta=datasets_plot,
|
112 |
+
fill="toself",
|
113 |
+
fillcolor=colors[idx % len(colors)],
|
114 |
+
line=dict(color=line_colors[idx % len(line_colors)], width=2),
|
115 |
+
name=model_name,
|
116 |
+
text=[f"{val:.3f}" for val in values],
|
117 |
+
textposition="middle right",
|
118 |
+
mode="lines+markers+text",
|
119 |
+
)
|
120 |
+
)
|
121 |
+
|
122 |
+
fig.update_layout(
|
123 |
+
polar=dict(
|
124 |
+
radialaxis=dict(
|
125 |
+
visible=True, range=[0, 1], showline=False, tickfont=dict(size=12)
|
126 |
+
),
|
127 |
+
angularaxis=dict(
|
128 |
+
tickfont=dict(size=13, family="Arial"),
|
129 |
+
rotation=90,
|
130 |
+
direction="clockwise",
|
131 |
+
),
|
132 |
+
),
|
133 |
+
showlegend=True,
|
134 |
+
legend=dict(
|
135 |
+
orientation="h",
|
136 |
+
yanchor="bottom",
|
137 |
+
y=-0.2,
|
138 |
+
xanchor="center",
|
139 |
+
x=0.5,
|
140 |
+
font=dict(size=14),
|
141 |
+
),
|
142 |
+
title=dict(
|
143 |
+
text="Model Comparison",
|
144 |
+
x=0.5,
|
145 |
+
y=0.95,
|
146 |
+
font=dict(size=24, family="Arial", color="#1F2937"),
|
147 |
+
),
|
148 |
+
paper_bgcolor="white",
|
149 |
+
plot_bgcolor="white",
|
150 |
+
height=700,
|
151 |
+
width=900,
|
152 |
+
margin=dict(t=100, b=100, l=80, r=80),
|
153 |
+
)
|
154 |
+
|
155 |
+
return fig
|
156 |
+
|
157 |
+
|
158 |
+
def get_performance_cost_chart(df, category_name="Overall"):
|
159 |
+
colors = get_chart_colors()
|
160 |
+
fig, ax = plt.subplots(figsize=(12, 8), dpi=300)
|
161 |
+
|
162 |
+
fig.patch.set_facecolor(colors["background"])
|
163 |
+
ax.set_facecolor(colors["background"])
|
164 |
+
ax.grid(True, linestyle="--", alpha=0.15, which="both", color=colors["grid"])
|
165 |
+
|
166 |
+
score_column = "Category Score"
|
167 |
+
|
168 |
+
for _, row in df.iterrows():
|
169 |
+
color = colors[row["Model Type"]]
|
170 |
+
size = 100 if row[score_column] > 0.85 else 80
|
171 |
+
edge_color = (
|
172 |
+
colors["Private"]
|
173 |
+
if row["Model Type"] == "Private"
|
174 |
+
else colors["Open source"]
|
175 |
+
)
|
176 |
+
|
177 |
+
ax.scatter(
|
178 |
+
row["IO Cost"],
|
179 |
+
row[score_column] * 100,
|
180 |
+
c=color,
|
181 |
+
s=size,
|
182 |
+
alpha=0.9,
|
183 |
+
edgecolor=edge_color,
|
184 |
+
linewidth=1,
|
185 |
+
zorder=5,
|
186 |
+
)
|
187 |
+
|
188 |
+
bbox_props = dict(
|
189 |
+
boxstyle="round,pad=0.3", fc=colors["background"], ec="none", alpha=0.8
|
190 |
+
)
|
191 |
+
|
192 |
+
ax.annotate(
|
193 |
+
f"{row['Model']}\n(${row['IO Cost']:.2f})",
|
194 |
+
(row["IO Cost"], row[score_column] * 100),
|
195 |
+
xytext=(5, 5),
|
196 |
+
textcoords="offset points",
|
197 |
+
fontsize=8,
|
198 |
+
fontweight="bold",
|
199 |
+
color=colors["text"],
|
200 |
+
bbox=bbox_props,
|
201 |
+
zorder=6,
|
202 |
+
)
|
203 |
+
|
204 |
+
ax.set_xscale("log")
|
205 |
+
ax.set_xlim(0.08, 1000)
|
206 |
+
ax.set_ylim(60, 100)
|
207 |
+
|
208 |
+
ax.set_xlabel(
|
209 |
+
"I/O Cost per Million Tokens ($)",
|
210 |
+
fontsize=10,
|
211 |
+
fontweight="bold",
|
212 |
+
labelpad=10,
|
213 |
+
color=colors["text"],
|
214 |
+
)
|
215 |
+
ax.set_ylabel(
|
216 |
+
"Model Performance Score",
|
217 |
+
fontsize=10,
|
218 |
+
fontweight="bold",
|
219 |
+
labelpad=10,
|
220 |
+
color=colors["text"],
|
221 |
+
)
|
222 |
+
|
223 |
+
legend_elements = [
|
224 |
+
plt.scatter([], [], c=colors[label], label=label, s=80)
|
225 |
+
for label in ["Private", "Open source"]
|
226 |
+
]
|
227 |
+
ax.legend(
|
228 |
+
handles=legend_elements,
|
229 |
+
loc="upper right",
|
230 |
+
frameon=True,
|
231 |
+
facecolor=colors["background"],
|
232 |
+
edgecolor="none",
|
233 |
+
fontsize=9,
|
234 |
+
labelcolor=colors["text"],
|
235 |
+
)
|
236 |
+
|
237 |
+
ax.set_title(
|
238 |
+
f"Performance vs. Cost - {category_name}",
|
239 |
+
fontsize=14,
|
240 |
+
pad=15,
|
241 |
+
fontweight="bold",
|
242 |
+
color=colors["text"],
|
243 |
+
)
|
244 |
+
|
245 |
+
for y1, y2, color in zip([85, 75, 60], [100, 85, 75], colors["performance_bands"]):
|
246 |
+
ax.axhspan(y1, y2, alpha=0.2, color=color, zorder=1)
|
247 |
+
|
248 |
+
ax.tick_params(axis="both", which="major", labelsize=9, colors=colors["text"])
|
249 |
+
ax.tick_params(axis="both", which="minor", labelsize=8, colors=colors["text"])
|
250 |
+
ax.xaxis.set_minor_locator(plt.LogLocator(base=10.0, subs=np.arange(2, 10) * 0.1))
|
251 |
+
|
252 |
+
for spine in ax.spines.values():
|
253 |
+
spine.set_color(colors["grid"])
|
254 |
+
|
255 |
+
plt.tight_layout()
|
256 |
+
return fig
|