Deploy_GC3 / app.py
galihsukmana's picture
Upload 2 files
15cf699
raw
history blame
1.78 kB
import streamlit as st
import pandas as pd
import pickle
import joblib
st.title("Prediction of Death Event")
# import model
model = pickle.load(open("boosted.pkl", "rb"))
st.write('Insert feature below to predict')
# user input
age = st.number_input(label='Age', min_value=40, max_value=95, value=40, step=1)
anaemia = st.selectbox(label='Anaemia', options=[0,1])
creatinine_phosphokinase = st.number_input(label='Creatinine Phosphokinase', min_value=23.0, max_value=1954.5, value=23.0, step=0.1)
diabetes = st.selectbox(label='Diabetes', options=[0,1])
ejection_fraction = st.number_input(label='Ejection Fraction', min_value=14.0, max_value=73.4, value=14.0, step=0.1)
high_blood_pressure = st.selectbox(label='High Blood Pressure', options=[0,1])
platelets = st.number_input(label='Platelets', min_value=25100, max_value=543000, value=26000, step=10)
serum_creatinine = st.number_input(label='Serum Creatinine', min_value=0.5, max_value=4.2, value=1.5, step=0.1)
smoking = st.selectbox(label='Smoking', options=[0,1])
time = st.number_input(label='Time', min_value=4, max_value=285, value=10, step=1)
# convert into dataframe
data = pd.DataFrame({'Age': [age],
'Anaemia': [anaemia],
'Creatinine Phosphokinas': [creatinine_phosphokinase],
'Diabetes':[diabetes],
'Ejection Fraction': [ejection_fraction],
'High Blood Pressure': [high_blood_pressure],
'Platelets': [platelets],
'Serum Creatinine': [serum_creatinine],
'Smoking': [smoking],
'Time': [time]})
# model predict
clas = model.predict(data).tolist()[0]
# interpretation
st.write('Classification Result: ')
if clas == 1:
st.text('Die')
else:
st.text('Alive')