Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
# Images | |
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') | |
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', 'bus.jpg') | |
# Model | |
#model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update | |
model = torch.hub.load('/yolov5', 'custom', path='/saved_model/s1000_best.pt', source='local') # local model | |
def yolo(im, size=640): | |
g = (size / max(im.size)) # gain | |
im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
results = model(im) # inference | |
results.render() # updates results.imgs with boxes and labels | |
return Image.fromarray(results.imgs[0]) | |
inputs = gr.inputs.Image(type='pil', label="Original Image") | |
outputs = gr.outputs.Image(type="pil", label="Output Image") | |
title = "S1000 Detection" | |
description = "YOLOv5 Gradio demo for object detection. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'>YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset, and includes " \ | |
"simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, " \ | |
"and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov5'>Source code</a> |" \ | |
"<a href='https://apps.apple.com/app/id1452689527'>iOS App</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>" | |
path_folder = '/datasets/s1000/' | |
examples = [[path_folder+'s1000 (1).png'], [path_folder+'s1000 (2).png'],[path_folder+'s1000 (3).png'],[path_folder+'s1000 (4).png'],[path_folder+'s1000 (5).png']] | |
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch( | |
debug=True) |