Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,95 +1,31 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
|
|
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from
|
| 4 |
-
from dotenv import load_dotenv
|
| 5 |
-
import os
|
| 6 |
import torch
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
label_mapping = None
|
| 15 |
|
| 16 |
-
|
| 17 |
-
if hf_token is None:
|
| 18 |
-
raise ValueError("HF_API_TOKEN not found in environment variables or .env file.")
|
| 19 |
-
|
| 20 |
-
device = "cpu"
|
| 21 |
-
print(f"Loading model to device: {device}")
|
| 22 |
-
|
| 23 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token, trust_remote_code=True, use_fast=False)
|
| 24 |
-
|
| 25 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 26 |
-
model_id,
|
| 27 |
-
token=hf_token,
|
| 28 |
-
device_map=device,
|
| 29 |
-
trust_remote_code=True
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
sentiment_model = pipeline(
|
| 33 |
-
"text-classification",
|
| 34 |
-
model=model,
|
| 35 |
-
tokenizer=tokenizer,
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
label_mapping = {
|
| 39 |
-
"LABEL_0": "Negative",
|
| 40 |
-
"LABEL_1": "Neutral",
|
| 41 |
-
"LABEL_2": "Positive"
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
print("Sentiment model loaded successfully.")
|
| 45 |
-
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print(f"FATAL ERROR: Failed to load sentiment model during startup: {e}")
|
| 48 |
-
raise e
|
| 49 |
-
|
| 50 |
-
app = FastAPI(
|
| 51 |
-
title="YouTube Sentiment Analysis API",
|
| 52 |
-
description="API for analyzing sentiment of Telugu/English/Transliterated YouTube comments using a Hugging Face model.",
|
| 53 |
-
version="1.0.0",
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
class TextInput(BaseModel):
|
| 57 |
-
text: str
|
| 58 |
-
|
| 59 |
-
class SentimentOutput(BaseModel):
|
| 60 |
-
comment: str
|
| 61 |
-
sentiment: str
|
| 62 |
-
score: float | None = None
|
| 63 |
|
| 64 |
@app.get("/")
|
| 65 |
-
|
| 66 |
-
return {"message": "
|
| 67 |
-
|
| 68 |
-
@app.post("/
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
raise HTTPException(status_code=400, detail="Input text cannot be empty or just whitespace.")
|
| 77 |
-
|
| 78 |
-
try:
|
| 79 |
-
output = sentiment_model(comment_text)
|
| 80 |
-
|
| 81 |
-
if output and isinstance(output, list) and isinstance(output[0], dict) and 'label' in output[0]:
|
| 82 |
-
label = label_mapping.get(output[0]['label'], output[0]['label'])
|
| 83 |
-
score = output[0].get('score', None)
|
| 84 |
-
|
| 85 |
-
return SentimentOutput(
|
| 86 |
-
comment=comment_text,
|
| 87 |
-
sentiment=label,
|
| 88 |
-
score=score
|
| 89 |
-
)
|
| 90 |
-
else:
|
| 91 |
-
raise HTTPException(status_code=500, detail="Analysis output format unexpected from model pipeline.")
|
| 92 |
-
|
| 93 |
-
except Exception as e:
|
| 94 |
-
print(f"Error during sentiment analysis for text: '{comment_text[:50]}...' Error: {e}")
|
| 95 |
-
raise HTTPException(status_code=500, detail=f"Error during sentiment analysis: {e}")
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
import uvicorn
|
| 3 |
from pydantic import BaseModel
|
| 4 |
+
from typing import List
|
|
|
|
|
|
|
| 5 |
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
|
| 8 |
+
class CommentsInput(BaseModel):
|
| 9 |
+
comments: List[str]
|
| 10 |
|
| 11 |
+
model_name = "gajula21/youtube-sentiment-model-telugu"
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 14 |
+
model.eval()
|
| 15 |
|
| 16 |
+
label_mapping = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
|
|
|
| 17 |
|
| 18 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
@app.get("/")
|
| 21 |
+
def read_root():
|
| 22 |
+
return {"message": "Hello, World!"}
|
| 23 |
+
|
| 24 |
+
@app.post("/sentiment")
|
| 25 |
+
def predict_sentiments(data: CommentsInput):
|
| 26 |
+
inputs = tokenizer(data.comments, return_tensors="pt", padding=True, truncation=True, max_length=256)
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
outputs = model(**inputs)
|
| 29 |
+
predictions = torch.argmax(outputs.logits, dim=1).tolist()
|
| 30 |
+
sentiments = [label_mapping[p] for p in predictions]
|
| 31 |
+
return {"sentiments": sentiments}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|