leaderboard / app.py
Clémentine
updated app
741edbf
raw
history blame
7.16 kB
import os
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
BALM_TOKEN = os.environ.get("WTOKEN", None)
OWNER="gaia-benchmark"
DATA_DATASET = f"{OWNER}/GAIA"
INTERNAL_DATA_DATASET = f"{OWNER}/GAIA_internal"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()
YEAR_VERSION = "2023"
os.makedirs("scored", exist_ok=True)
# Display the results
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN)
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
# Gold answers
gold_results = {}
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, f"{YEAR_VERSION}_all", use_auth_token=BALM_TOKEN)
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "validation"]}
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=BALM_TOKEN)
COLS = ["Model", "Score ⬆️", "Organisation"]
TYPES = ["str", "number", "str",]
def add_new_eval(
val_or_test: str,
model: str,
path_to_file,
organisation: str,
mail: str,
):
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set(eval_results[val_or_test]["model"]) and organisation.lower() in set(eval_results[val_or_test]["organisation"]):
return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# Save submitted file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=BALM_TOKEN
)
# Compute score
file_path = path_to_file.name
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
for line in f:
task = json.loads(line)
if "model_answer" not in task:
raise Exception("No model_answer key in the file provided")
answer = task["model_answer"]
task_id = task["task_id"]
level = int(gold_results[val_or_test][task_id]["Level"])
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
scored_file.write(
json.dumps({
"id": task_id,
"model_answer": answer,
"score": score,
"level": level
}) + "\n"
)
scores["all"] += score
scores[level] += score
num_questions["all"] += 1
num_questions[level] += 1
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=BALM_TOKEN
)
# Actual submission
eval_entry = {
"model": model,
"organisation": organisation,
"mail": mail,
"score": scores["all"]/num_questions["all"],
"score_level1": scores[1]/num_questions[1],
"score_level2": scores[2]/num_questions[2],
"score_level3": scores[3]/num_questions[3],
}
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
print(eval_results)
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=BALM_TOKEN)
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
def refresh():
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN, download_mode="force_redownload")
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
return eval_dataframe_val, eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
with gr.Tab("Results: Validation"):
leaderboard_table_val = gr.components.Dataframe(
value=eval_dataframe_val, headers=COLS, datatype=TYPES, interactive=False,
)
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test, headers=COLS, datatype=TYPES, interactive=False,
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_val,
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split")
model_name_textbox = gr.Textbox(label="Model name")
file_output = gr.File()
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(label="Contact email")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch()