T5-Summarization / src /models /train_model.py
Gagan Bhatia
Update train_model.py
51b4b2d
raw
history blame
1.23 kB
import json
import yaml
from model import Summarization
import pandas as pd
def train_model():
"""
Train the model
"""
with open("params.yml") as f:
params = yaml.safe_load(f)
# Load the data
train_df = pd.read_csv("data/processed/train.csv")
eval_df = pd.read_csv("data/processed/validation.csv")
train_df = train_df.sample(frac=params["split"], replace=True, random_state=1)
eval_df = eval_df.sample(frac=params["split"], replace=True, random_state=1)
model = Summarization()
model.from_pretrained(
model_type=params["model_type"], model_name=params["model_name"]
)
model.train(
train_df=train_df,
eval_df=eval_df,
batch_size=params["batch_size"],
max_epochs=params["epochs"],
use_gpu=params["use_gpu"],
learning_rate=float(params["learning_rate"]),
num_workers=int(params["num_workers"]),
)
model.save_model(model_dir=params["model_dir"])
with open("wandb/latest-run/files/wandb-summary.json") as json_file:
data = json.load(json_file)
with open("reports/training_metrics.txt", "w") as fp:
json.dump(data, fp)
if __name__ == "__main__":
train_model()