Added new architecture supporting GQA
Browse files- .DS_Store +0 -0
- app.py +4 -4
- model/.DS_Store +0 -0
- model/{model_1000_cpu.bin → model_1000_.bin} +2 -2
- my_gpt.py +113 -19
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -4,7 +4,7 @@ from my_gpt import my_gpt
|
|
4 |
from tokenizer.tokenizer import BPE
|
5 |
|
6 |
##Load model
|
7 |
-
model = my_gpt.load_pretrained("model/
|
8 |
# model.to(torch.device("cpu"))
|
9 |
# model.save_pretrained("model/model_1000_cpu.bin")
|
10 |
# exit()
|
@@ -21,7 +21,7 @@ def generate(input_text):
|
|
21 |
iface = gr.Interface(fn=generate,
|
22 |
inputs="text",
|
23 |
outputs="text",
|
24 |
-
title="
|
25 |
-
description="""This model is trained for
|
26 |
-
able to generate perfect sentences/words
|
27 |
iface.launch()
|
|
|
4 |
from tokenizer.tokenizer import BPE
|
5 |
|
6 |
##Load model
|
7 |
+
model = my_gpt.load_pretrained("model/model_1000_.bin")
|
8 |
# model.to(torch.device("cpu"))
|
9 |
# model.save_pretrained("model/model_1000_cpu.bin")
|
10 |
# exit()
|
|
|
21 |
iface = gr.Interface(fn=generate,
|
22 |
inputs="text",
|
23 |
outputs="text",
|
24 |
+
title="NoobGPT - 1000 steps",
|
25 |
+
description="""This 13M param model is trained for 1000steps only and has seen only 1M tokens. It is not
|
26 |
+
able to generate perfect sentences/words but has acquired a rudimentary understanding of the English language""")
|
27 |
iface.launch()
|
model/.DS_Store
CHANGED
Binary files a/model/.DS_Store and b/model/.DS_Store differ
|
|
model/{model_1000_cpu.bin → model_1000_.bin}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5877a72287e65e61deab89188115afa2eb7dade01cbde49c3103fa40b468a1c8
|
3 |
+
size 56607625
|
my_gpt.py
CHANGED
@@ -4,13 +4,14 @@ from torch.nn import functional as F
|
|
4 |
import json
|
5 |
import logging
|
6 |
|
7 |
-
|
8 |
-
block_size = 256
|
9 |
vocab_size = 500
|
10 |
n_embed = 384
|
11 |
dropout = 0.2
|
12 |
n_head = 6
|
13 |
n_layer = 6
|
|
|
|
|
14 |
|
15 |
class Head(nn.Module):
|
16 |
def __init__(self, head_size=16):
|
@@ -40,18 +41,102 @@ class Head(nn.Module):
|
|
40 |
|
41 |
return out
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
class MultiHeadAttention(nn.Module):
|
44 |
-
def __init__(self,num_heads,
|
45 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
self.dropout = nn.Dropout(dropout)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
class FeedForward(nn.Module):
|
57 |
def __init__(self,n_embed) -> None:
|
@@ -68,26 +153,33 @@ class FeedForward(nn.Module):
|
|
68 |
return x
|
69 |
|
70 |
class decoder_block(nn.Module):
|
71 |
-
def __init__(self, n_embed, n_heads):
|
72 |
super().__init__()
|
73 |
-
|
|
|
|
|
74 |
self.ln1 = nn.LayerNorm(n_embed)
|
75 |
self.ln2 = nn.LayerNorm(n_embed)
|
76 |
self.ffwd = FeedForward(n_embed)
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def forward(self, x):
|
79 |
-
x = x + self.sa(self.ln1(x))
|
80 |
x = x + self.ffwd(self.ln2(x))
|
81 |
return x
|
82 |
|
83 |
|
84 |
|
85 |
class my_gpt(nn.Module):
|
86 |
-
def __init__(self, block_size =
|
87 |
super().__init__()
|
|
|
88 |
self.block_size = block_size ##context window size
|
89 |
self.token_embed = nn.Embedding(vocab_size, n_embed)
|
90 |
-
self.pos_embed = nn.Embedding(
|
91 |
self.lm_head = nn.Linear(n_embed, vocab_size)
|
92 |
self.sa_head = Head(vocab_size)
|
93 |
self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)])
|
@@ -103,19 +195,20 @@ class my_gpt(nn.Module):
|
|
103 |
elif isinstance(module, nn.Embedding):
|
104 |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
105 |
|
106 |
-
def forward(self,
|
107 |
"""
|
108 |
Args:
|
109 |
-
|
110 |
targets :
|
111 |
|
112 |
Returns:
|
113 |
logits
|
114 |
"""
|
115 |
# print("idx ", idx)
|
116 |
-
B, T =
|
117 |
-
tok_emd = self.token_embed(
|
118 |
-
|
|
|
119 |
|
120 |
|
121 |
x = tok_emd + pos_emd
|
@@ -154,6 +247,7 @@ class my_gpt(nn.Module):
|
|
154 |
for _ in range(max_new_tokens):
|
155 |
##Take only last allowed number of tokens
|
156 |
idx_tokens = context[:, -self.block_size:]
|
|
|
157 |
|
158 |
##generate the next token
|
159 |
logits, loss = self(idx_tokens)
|
|
|
4 |
import json
|
5 |
import logging
|
6 |
|
7 |
+
block_size = 128
|
|
|
8 |
vocab_size = 500
|
9 |
n_embed = 384
|
10 |
dropout = 0.2
|
11 |
n_head = 6
|
12 |
n_layer = 6
|
13 |
+
kv_heads = 3
|
14 |
+
max_position_embeddings = 128
|
15 |
|
16 |
class Head(nn.Module):
|
17 |
def __init__(self, head_size=16):
|
|
|
41 |
|
42 |
return out
|
43 |
|
44 |
+
|
45 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
46 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
47 |
+
"""
|
48 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
49 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
50 |
+
"""
|
51 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
52 |
+
if n_rep == 1:
|
53 |
+
return hidden_states
|
54 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
55 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
56 |
+
|
57 |
+
|
58 |
class MultiHeadAttention(nn.Module):
|
59 |
+
def __init__(self,num_heads, head_dim) :
|
60 |
super().__init__()
|
61 |
+
assert num_heads%kv_heads == 0
|
62 |
+
self.n_embed = n_embed
|
63 |
+
self.num_attn_heads = num_heads
|
64 |
+
self.head_dim = head_dim
|
65 |
+
self.kv_heads = kv_heads
|
66 |
+
# self.kv_out_proj = head_dim * self.kv_heads #Doubt
|
67 |
+
self.num_kv_groups = self.num_attn_heads // self.kv_heads
|
68 |
|
69 |
+
|
70 |
+
self.heads = nn.ModuleList(Head(head_size=head_dim) for _ in range(num_heads))
|
71 |
+
##Only self attention
|
72 |
+
|
73 |
+
#For num_attn_heads number of heads
|
74 |
+
self.Wq = nn.Linear(self.n_embed, self.num_attn_heads*self.head_dim)
|
75 |
+
#For kv_heads number of heads
|
76 |
+
self.Wk = nn.Linear(self.n_embed, self.kv_heads * self.head_dim)
|
77 |
+
self.Wv = nn.Linear(self.n_embed, self.kv_heads * self.head_dim)
|
78 |
+
|
79 |
+
self.o_proj = nn.Linear(self.head_dim * self.num_attn_heads, self.n_embed)
|
80 |
self.dropout = nn.Dropout(dropout)
|
81 |
|
82 |
+
# self.attention_mask = torch.zeros((bsz, self.num_attn_heads, qlen, qlen))
|
83 |
+
# self.attention_mask[:, :, :, qlen:] = float('-inf') # Mask out positions beyond the key sequence length
|
84 |
+
|
85 |
+
|
86 |
+
def forward(self, x, attn_mask= None):
|
87 |
+
"""
|
88 |
+
Parameters:
|
89 |
+
x (bsz, qlen, embed) : input
|
90 |
+
"""
|
91 |
+
# out = torch.cat([h(x) for h in self.heads], dim=-1)
|
92 |
+
# attn_output = self.dropout(self.o_proj(out))
|
93 |
+
|
94 |
+
# ################ Experiment
|
95 |
+
|
96 |
+
|
97 |
+
bsz, qlen, embed = x.size()
|
98 |
+
# print("input size", x.size())
|
99 |
+
|
100 |
+
q = self.Wq(x) ##(B,T,head_dim * num_heads)
|
101 |
+
k = self.Wk(x) ##(B,T,head_dim * kv_heads)
|
102 |
+
v = self.Wv(x) ##(B,T,head_dim * kv_heads)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
q = q.view(bsz, qlen, self.num_attn_heads, self.head_dim).transpose(2,1) ##(B,T,head_dim * num_heads)
|
107 |
+
k = k.view(bsz, qlen, self.kv_heads, self.head_dim).transpose(2,1) ##(B,T,head_dim * kv_heads)
|
108 |
+
v = v.view(bsz, qlen, self.kv_heads, self.head_dim).transpose(2,1) ##(B,T,head_dim * kv_heads)
|
109 |
+
|
110 |
+
# print("k-shape before ",k.shape)
|
111 |
+
k = repeat_kv(k, self.num_kv_groups) ##(B, n_kvheads * nrep, qlen, head_dim)
|
112 |
+
v = repeat_kv(v, self.num_kv_groups)
|
113 |
+
|
114 |
+
attn_scores = q @ k.transpose(-1,-2)/torch.sqrt(torch.tensor(self.n_embed)) ##(B, T, block_size)
|
115 |
+
|
116 |
+
################
|
117 |
+
# print("Q-shape ", q.shape)
|
118 |
+
# print("k-shape ",k.shape)
|
119 |
+
# print(k.shape[-2])
|
120 |
+
# print(attn_scores.shape)
|
121 |
+
|
122 |
+
if attn_mask is not None:
|
123 |
+
# causal_mask = attn_mask[:, :, :, : k.shape[-2]]
|
124 |
+
# attn_scores = attn_scores + causal_mask
|
125 |
+
attn_scores = attn_scores.masked_fill(
|
126 |
+
attn_mask[None, None, :qlen, :qlen]==0 , float("-inf")
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
attn_scores = F.softmax(attn_scores, dim=-1)
|
131 |
+
attn_scores = F.dropout(attn_scores) ##Why this dropout is required??
|
132 |
+
|
133 |
+
attn_output = torch.matmul(attn_scores, v) ##(B, n_heads, qlen, hidden_size)
|
134 |
+
attn_output = attn_output.transpose(1,2).contiguous()
|
135 |
+
attn_output = attn_output.view(bsz, qlen, self.n_embed)
|
136 |
+
|
137 |
+
attn_output = self.o_proj(attn_output)
|
138 |
+
return attn_output
|
139 |
+
|
140 |
|
141 |
class FeedForward(nn.Module):
|
142 |
def __init__(self,n_embed) -> None:
|
|
|
153 |
return x
|
154 |
|
155 |
class decoder_block(nn.Module):
|
156 |
+
def __init__(self, n_embed, n_heads, attn_mask=None):
|
157 |
super().__init__()
|
158 |
+
# Assume 0 for allowed positions and -inf for masked positions
|
159 |
+
|
160 |
+
self.sa = MultiHeadAttention(n_heads,n_embed//n_head)
|
161 |
self.ln1 = nn.LayerNorm(n_embed)
|
162 |
self.ln2 = nn.LayerNorm(n_embed)
|
163 |
self.ffwd = FeedForward(n_embed)
|
164 |
+
# self.causal_mask = torch.tril(torch.ones(block_size,block_size))
|
165 |
+
self.register_buffer('causal_mask',torch.tril(torch.ones(block_size,block_size)))
|
166 |
+
|
167 |
+
|
168 |
|
169 |
def forward(self, x):
|
170 |
+
x = x + self.sa(self.ln1(x), attn_mask = self.causal_mask)
|
171 |
x = x + self.ffwd(self.ln2(x))
|
172 |
return x
|
173 |
|
174 |
|
175 |
|
176 |
class my_gpt(nn.Module):
|
177 |
+
def __init__(self, device='cpu', block_size = 128):
|
178 |
super().__init__()
|
179 |
+
self.device = device
|
180 |
self.block_size = block_size ##context window size
|
181 |
self.token_embed = nn.Embedding(vocab_size, n_embed)
|
182 |
+
self.pos_embed = nn.Embedding(max_position_embeddings, n_embed)
|
183 |
self.lm_head = nn.Linear(n_embed, vocab_size)
|
184 |
self.sa_head = Head(vocab_size)
|
185 |
self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)])
|
|
|
195 |
elif isinstance(module, nn.Embedding):
|
196 |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
197 |
|
198 |
+
def forward(self, x, targets = None):
|
199 |
"""
|
200 |
Args:
|
201 |
+
x: int(B,T) Token ids
|
202 |
targets :
|
203 |
|
204 |
Returns:
|
205 |
logits
|
206 |
"""
|
207 |
# print("idx ", idx)
|
208 |
+
B, T = x.size() ##
|
209 |
+
tok_emd = self.token_embed(x) ##(B,T,C)
|
210 |
+
position_ids = torch.arange(T, device = self.device )
|
211 |
+
pos_emd = self.pos_embed(position_ids)
|
212 |
|
213 |
|
214 |
x = tok_emd + pos_emd
|
|
|
247 |
for _ in range(max_new_tokens):
|
248 |
##Take only last allowed number of tokens
|
249 |
idx_tokens = context[:, -self.block_size:]
|
250 |
+
# print(f"idx tokens {idx_tokens.shape}")
|
251 |
|
252 |
##generate the next token
|
253 |
logits, loss = self(idx_tokens)
|