my-blogs / my_gpt.py
gagan001's picture
Added model and tokenizer
9cdcbb3
raw
history blame
5.31 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
import json
import logging
block_size = 256
vocab_size = 500
n_embed = 384
dropout = 0.2
n_head = 6
n_layer = 6
class Head(nn.Module):
def __init__(self, head_size=16):
super().__init__()
self.query = nn.Linear(n_embed, head_size, bias=False)
self.key = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self,x):
B,T,C = x.shape
q = self.query(x)
k = self.key(x)
wei = (q @ k.transpose(-2,-1)) * (k.shape[-1]**(-0.5))
wei = wei.masked_fill(self.tril[:T,:T]==0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v ## (B,T,HS)
return out
class MultiHeadAttention(nn.Module):
def __init__(self,num_heads, head_size) :
super().__init__()
self.heads = nn.ModuleList(Head(head_size=head_size) for _ in range(num_heads))
self.proj = nn.Linear(head_size * num_heads, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
def __init__(self,n_embed) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed,4* n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
x = self.net(x)
return x
class decoder_block(nn.Module):
def __init__(self, n_embed, n_heads):
super().__init__()
self.sa = MultiHeadAttention(n_heads,n_embed//n_heads)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
self.ffwd = FeedForward(n_embed)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class my_gpt(nn.Module):
def __init__(self, block_size = 256):
super().__init__()
self.block_size = block_size ##context window size
self.token_embed = nn.Embedding(vocab_size, n_embed)
self.pos_embed = nn.Embedding(vocab_size, n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
self.sa_head = Head(vocab_size)
self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed) # final layer norm
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets = None):
"""
Args:
idx: int(B,T) Token ids
targets :
Returns:
logits
"""
# print("idx ", idx)
B, T = idx.shape ##
tok_emd = self.token_embed(idx) ##(B,T,C)
pos_emd = self.pos_embed(idx)
x = tok_emd + pos_emd
# print("x1 ", x.shape)
x = self.d_blocks(x) #
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) ##(B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
# print("logits ", logits.shape)
logits = logits.view(B*T,C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
# print("Logits", logits.shape)
return logits, loss
def generate(self, context : torch.tensor, max_new_tokens: int = 46, use_cache = False):
"""
Generates the next "max_new_tokens" number of tokens.
Args:
context (B,T):
max_new_tokens (int):
Returns:
[token] : List of generated tokens.
"""
# print("Context:" , context)
for _ in range(max_new_tokens):
##Take only last allowed number of tokens
idx_tokens = context[:, -self.block_size:]
##generate the next token
logits, loss = self(idx_tokens)
##Take only last allowed number of tokens
logits = logits[:,-1,:] ##(B,vocab_size)
# print("logits:" , logits.shape)
probs = F.softmax(logits, dim= -1)
idx_next = torch.multinomial(probs,num_samples=1) ##(B,1)
context = torch.concatenate([context, idx_next], dim=1)
return context
def save_pretrained(self, path):
torch.save(self.state_dict(),path)
print("Saved pretrained Successfully")
@classmethod
def load_pretrained(cls, path):
print("Loading pretrained model...")
model = cls()
model.load_state_dict(torch.load(path))
return model