Spaces:
Running
on
T4
Running
on
T4
""" | |
main.py | |
""" | |
# Standard library imports | |
import glob | |
import os | |
import time | |
from pathlib import Path | |
from tempfile import NamedTemporaryFile | |
from typing import List, Literal, Tuple, Optional | |
# Third-party imports | |
import gradio as gr | |
from loguru import logger | |
from pydantic import BaseModel | |
from pypdf import PdfReader | |
from pydub import AudioSegment | |
# Local imports | |
from prompts import SYSTEM_PROMPT | |
from utils import generate_script, generate_audio | |
class DialogueItem(BaseModel): | |
"""A single dialogue item.""" | |
speaker: Literal["Host (Jane)", "Guest"] | |
text: str | |
class Dialogue(BaseModel): | |
"""The dialogue between the host and guest.""" | |
scratchpad: str | |
name_of_guest: str | |
dialogue: List[DialogueItem] | |
def generate_podcast(file: str, tone: Optional[str] = None, length: Optional[str] = None) -> Tuple[str, str]: | |
"""Generate the audio and transcript from the PDF.""" | |
# Check if the file is a PDF | |
if not file.lower().endswith('.pdf'): | |
raise gr.Error("Please upload a PDF file.") | |
# Read the PDF file and extract text | |
try: | |
with Path(file).open("rb") as f: | |
reader = PdfReader(f) | |
text = "\n\n".join([page.extract_text() for page in reader.pages]) | |
except Exception as e: | |
raise gr.Error(f"Error reading the PDF file: {str(e)}") | |
# Check if the PDF has more than ~150,000 characters | |
if len(text) > 100000: | |
raise gr.Error("The PDF is too long. Please upload a PDF with fewer than ~100,000 characters.") | |
# Modify the system prompt based on the chosen tone and length | |
modified_system_prompt = SYSTEM_PROMPT | |
if tone: | |
modified_system_prompt += f"\n\nTONE: The tone of the podcast should be {tone}." | |
if length: | |
length_instructions = { | |
"Short (1-2 min)": "Keep the podcast brief, around 1-2 minutes long.", | |
"Medium (3-5 min)": "Aim for a moderate length, about 3-5 minutes.", | |
} | |
modified_system_prompt += f"\n\nLENGTH: {length_instructions[length]}" | |
# Call the LLM | |
llm_output = generate_script(modified_system_prompt, text, Dialogue) | |
logger.info(f"Generated dialogue: {llm_output}") | |
# Process the dialogue | |
audio_segments = [] | |
transcript = "" # start with an empty transcript | |
total_characters = 0 | |
for line in llm_output.dialogue: | |
logger.info(f"Generating audio for {line.speaker}: {line.text}") | |
if line.speaker == "Host (Jane)": | |
speaker = f"**Jane**: {line.text}" | |
else: | |
speaker = f"**{llm_output.name_of_guest}**: {line.text}" | |
transcript += speaker + "\n\n" | |
total_characters += len(line.text) | |
# Get audio file path | |
audio_file_path = generate_audio(line.text, line.speaker) | |
# Read the audio file into an AudioSegment | |
audio_segment = AudioSegment.from_file(audio_file_path) | |
audio_segments.append(audio_segment) | |
# Concatenate all audio segments | |
combined_audio = sum(audio_segments) | |
# Export the combined audio to a temporary file | |
temporary_directory = "./gradio_cached_examples/tmp/" | |
os.makedirs(temporary_directory, exist_ok=True) | |
temporary_file = NamedTemporaryFile( | |
dir=temporary_directory, | |
delete=False, | |
suffix=".mp3", | |
) | |
combined_audio.export(temporary_file.name, format="mp3") | |
# Delete any files in the temp directory that end with .mp3 and are over a day old | |
for file in glob.glob(f"{temporary_directory}*.mp3"): | |
if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60: | |
os.remove(file) | |
logger.info(f"Generated {total_characters} characters of audio") | |
return temporary_file.name, transcript | |
demo = gr.Interface( | |
title="Open NotebookLM", | |
description="Convert your PDFs into podcasts with open-source AI models (Llama 3.1 405B and MeloTTS). \n \n Note: Only the text content of the PDF will be processed. Images and tables are not included. The PDF should be no more than 100,000 characters due to the context length of Llama 3.1 405B.", | |
fn=generate_podcast, | |
inputs=[ | |
gr.File( | |
label="PDF", | |
file_types=[".pdf", "file/*"], | |
), | |
gr.Radio( | |
choices=["Fun", "Formal"], | |
label="Tone of the podcast", | |
value="casual" | |
), | |
gr.Radio( | |
choices=["Short (1-2 min)", "Medium (3-5 min)"], | |
label="Length of the podcast", | |
value="Medium (3-5 min)" | |
), | |
], | |
outputs=[ | |
gr.Audio(label="Audio", format="mp3"), | |
gr.Markdown(label="Transcript"), | |
], | |
allow_flagging="never", | |
api_name="generate_podcast", # Add this line | |
theme=gr.themes.Soft(), | |
concurrency_limit=5 | |
) | |
if __name__ == "__main__": | |
demo.launch(show_api=True) | |