Spaces:
Running
on
T4
Running
on
T4
""" | |
main.py | |
""" | |
# Standard library imports | |
import glob | |
import os | |
import time | |
from pathlib import Path | |
from tempfile import NamedTemporaryFile | |
from typing import List, Literal, Tuple, Optional | |
# Third-party imports | |
import gradio as gr | |
from loguru import logger | |
from pydantic import BaseModel, Field | |
from pypdf import PdfReader | |
from pydub import AudioSegment | |
# Local imports | |
from prompts import SYSTEM_PROMPT | |
from utils import generate_script, generate_audio, parse_url | |
class DialogueItem(BaseModel): | |
"""A single dialogue item.""" | |
speaker: Literal["Host (Jane)", "Guest"] | |
text: str | |
class ShortDialogue(BaseModel): | |
"""The dialogue between the host and guest.""" | |
scratchpad: str | |
name_of_guest: str | |
dialogue: List[DialogueItem] = Field(..., description="A list of dialogue items, typically between 5 to 9 items") | |
class MediumDialogue(BaseModel): | |
"""The dialogue between the host and guest.""" | |
scratchpad: str | |
name_of_guest: str | |
dialogue: List[DialogueItem] = Field(..., description="A list of dialogue items, typically between 8 to 13 items") | |
def generate_podcast( | |
files: List[str], | |
url: Optional[str], | |
question: Optional[str], | |
tone: Optional[str], | |
length: Optional[str], | |
language: str, | |
) -> Tuple[str, str]: | |
"""Generate the audio and transcript from the PDFs and/or URL.""" | |
text = "" | |
# Change language to the appropriate code | |
language_mapping = { | |
"English": "EN", | |
"Spanish": "ES", | |
"French": "FR", | |
"Chinese": "ZH", | |
"Japanese": "JP", | |
"Korean": "KR", | |
} | |
# Check if at least one input is provided | |
if not files and not url: | |
raise gr.Error("Please provide at least one PDF file or a URL.") | |
# Process PDFs if any | |
if files: | |
for file in files: | |
if not file.lower().endswith(".pdf"): | |
raise gr.Error( | |
f"File {file} is not a PDF. Please upload only PDF files." | |
) | |
try: | |
with Path(file).open("rb") as f: | |
reader = PdfReader(f) | |
text += "\n\n".join([page.extract_text() for page in reader.pages]) | |
except Exception as e: | |
raise gr.Error(f"Error reading the PDF file {file}: {str(e)}") | |
# Process URL if provided | |
if url: | |
try: | |
url_text = parse_url(url) | |
text += "\n\n" + url_text | |
except ValueError as e: | |
raise gr.Error(str(e)) | |
# Check total character count | |
if len(text) > 100000: | |
raise gr.Error( | |
"The total content is too long. Please ensure the combined text from PDFs and URL is fewer than ~100,000 characters." | |
) | |
# Modify the system prompt based on the user input | |
modified_system_prompt = SYSTEM_PROMPT | |
if question: | |
modified_system_prompt += f"\n\PLEASE ANSWER THE FOLLOWING QN: {question}" | |
if tone: | |
modified_system_prompt += f"\n\nTONE: The tone of the podcast should be {tone}." | |
if length: | |
length_instructions = { | |
"Short (1-2 min)": "Keep the podcast brief, around 1-2 minutes long.", | |
"Medium (3-5 min)": "Aim for a moderate length, about 3-5 minutes.", | |
} | |
modified_system_prompt += f"\n\nLENGTH: {length_instructions[length]}" | |
if language: | |
modified_system_prompt += ( | |
f"\n\nOUTPUT LANGUAGE <IMPORTANT>: The the podcast should be {language}." | |
) | |
# Call the LLM | |
if length == "Short (1-2 min)": | |
llm_output = generate_script(modified_system_prompt, text, ShortDialogue) | |
else: | |
llm_output = generate_script(modified_system_prompt, text, MediumDialogue) | |
logger.info(f"Generated dialogue: {llm_output}") | |
# Process the dialogue | |
audio_segments = [] | |
transcript = "" | |
total_characters = 0 | |
for line in llm_output.dialogue: | |
logger.info(f"Generating audio for {line.speaker}: {line.text}") | |
if line.speaker == "Host (Jane)": | |
speaker = f"**Jane**: {line.text}" | |
else: | |
speaker = f"**{llm_output.name_of_guest}**: {line.text}" | |
transcript += speaker + "\n\n" | |
total_characters += len(line.text) | |
# Get audio file path | |
audio_file_path = generate_audio( | |
line.text, line.speaker, language_mapping[language] | |
) | |
# Read the audio file into an AudioSegment | |
audio_segment = AudioSegment.from_file(audio_file_path) | |
audio_segments.append(audio_segment) | |
# Concatenate all audio segments | |
combined_audio = sum(audio_segments) | |
# Export the combined audio to a temporary file | |
temporary_directory = "./gradio_cached_examples/tmp/" | |
os.makedirs(temporary_directory, exist_ok=True) | |
temporary_file = NamedTemporaryFile( | |
dir=temporary_directory, | |
delete=False, | |
suffix=".mp3", | |
) | |
combined_audio.export(temporary_file.name, format="mp3") | |
# Delete any files in the temp directory that end with .mp3 and are over a day old | |
for file in glob.glob(f"{temporary_directory}*.mp3"): | |
if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60: | |
os.remove(file) | |
logger.info(f"Generated {total_characters} characters of audio") | |
return temporary_file.name, transcript | |
demo = gr.Interface( | |
title="Open NotebookLM", | |
description=""" | |
<table style="border-collapse: collapse; border: none; padding: 20px;"> | |
<tr style="border: none;"> | |
<td style="border: none; vertical-align: top; padding-right: 30px; padding-left: 30px;"> | |
<img src="https://raw.githubusercontent.com/gabrielchua/open-notebooklm/main/icon.png" alt="Open NotebookLM" width="120" style="margin-bottom: 10px;"> | |
</td> | |
<td style="border: none; vertical-align: top; padding: 10px;"> | |
<p style="margin-bottom: 15px;"><strong>Convert</strong> your PDFs into podcasts with open-source AI models (Llama 3.1 405B and MeloTTS).</p> | |
<p style="margin-top: 15px;">Note: Only the text content of the PDFs will be processed. Images and tables are not included. The total content should be no more than 100,000 characters due to the context length of Llama 3.1 405B.</p> | |
</td> | |
</tr> | |
</table> | |
""", | |
fn=generate_podcast, | |
inputs=[ | |
gr.File( | |
label="1. π Upload your PDF(s)", file_types=[".pdf"], file_count="multiple" | |
), | |
gr.Textbox( | |
label="2. π Paste a URL (optional)", | |
placeholder="Enter a URL to include its content", | |
), | |
gr.Textbox(label="3. π€ Do you have a specific question or topic in mind?"), | |
gr.Dropdown( | |
choices=["Fun", "Formal"], | |
label="4. π Choose the tone", | |
value="Fun" | |
), | |
gr.Dropdown( | |
choices=["Short (1-2 min)", "Medium (3-5 min)"], | |
label="5. β±οΈ Choose the length", | |
value="Medium (3-5 min)" | |
), | |
gr.Dropdown( | |
choices=["English", "Spanish", "French", "Chinese", "Japanese", "Korean"], | |
value="English", | |
label="6. π Choose the language" | |
), | |
], | |
outputs=[ | |
gr.Audio(label="Podcast", format="mp3"), | |
gr.Markdown(label="Transcript"), | |
], | |
allow_flagging="never", | |
api_name="generate_podcast", | |
theme=gr.themes.Soft(), | |
concurrency_limit=3, | |
examples=[ | |
[ | |
[str(Path("examples/1310.4546v1.pdf"))], | |
"", | |
"Explain this paper to me like I'm 5 years old", | |
"Fun", | |
"Short (1-2 min)", | |
"English", | |
], | |
[ | |
[], | |
"https://en.wikipedia.org/wiki/Hugging_Face", | |
"How did Hugging Face become so successful?", | |
"Fun", | |
"Short (1-2 min)", | |
"English", | |
], | |
[ | |
[], | |
"https://simple.wikipedia.org/wiki/Taylor_Swift", | |
"Why is Taylor Swift so popular?", | |
"Fun", | |
"Short (1-2 min)", | |
"English", | |
], | |
], | |
cache_examples=True, | |
) | |
if __name__ == "__main__": | |
demo.launch(show_api=True) | |