gabor1's picture
Update app.py
2e00785 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3")
model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3")
# Reranking logic
def rerank(query, docs_text):
docs = docs_text.strip().split('\n')
pairs = [(query, doc) for doc in docs]
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
scores = model(**inputs).logits.squeeze(-1)
results = sorted(zip(docs, scores.tolist()), key=lambda x: x[1], reverse=True)
# Return structured JSON array
return [{"score": round(score, 4), "document": doc} for doc, score in results]
# Create API-ready Interface
iface = gr.Interface(
fn=rerank,
inputs=[
gr.Textbox(label="Query", lines=1),
gr.Textbox(label="Documents (one per line)", lines=10)
],
outputs="json",
title="BGE Reranker v2 M3",
description="Rerank a list of documents based on a search query using BGE v2 M3."
)
# ✅ Do NOT use `share=True`, do NOT set `ssr_mode`
iface.launch()