Spaces:
Running
Running
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| # Load model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3") | |
| model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3") | |
| # Reranking logic | |
| def rerank(query, docs_text): | |
| docs = docs_text.strip().split('\n') | |
| pairs = [(query, doc) for doc in docs] | |
| inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt") | |
| with torch.no_grad(): | |
| scores = model(**inputs).logits.squeeze(-1) | |
| results = sorted(zip(docs, scores.tolist()), key=lambda x: x[1], reverse=True) | |
| # Return structured JSON array | |
| return [{"score": round(score, 4), "document": doc} for doc, score in results] | |
| # Create API-ready Interface | |
| iface = gr.Interface( | |
| fn=rerank, | |
| inputs=[ | |
| gr.Textbox(label="Query", lines=1), | |
| gr.Textbox(label="Documents (one per line)", lines=10) | |
| ], | |
| outputs="json", | |
| title="BGE Reranker v2 M3", | |
| description="Rerank a list of documents based on a search query using BGE v2 M3." | |
| ) | |
| # ✅ Do NOT use `share=True`, do NOT set `ssr_mode` | |
| iface.launch() |