Spaces:
Running
Running
Upload 6 files
Browse files- Dockerfile +25 -0
- assets/favicon.ico +0 -0
- main.py +177 -0
- requirements.txt +126 -0
- utils/__init__.py +0 -0
- utils/config.py +73 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11.9-slim
|
2 |
+
|
3 |
+
# Copy requirements file
|
4 |
+
COPY requirements.txt .
|
5 |
+
|
6 |
+
# Update pip
|
7 |
+
RUN pip --timeout=3000 install --no-cache-dir --upgrade pip
|
8 |
+
|
9 |
+
# Install dependecies
|
10 |
+
RUN pip --timeout=3000 install --no-cache-dir -r requirements.txt
|
11 |
+
|
12 |
+
# Make project directory
|
13 |
+
RUN mkdir -p /api/
|
14 |
+
|
15 |
+
# Set working directory
|
16 |
+
WORKDIR /api
|
17 |
+
|
18 |
+
# Copy API
|
19 |
+
COPY . .
|
20 |
+
|
21 |
+
# Expose app port
|
22 |
+
EXPOSE 7860
|
23 |
+
|
24 |
+
# Start application
|
25 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
assets/favicon.ico
ADDED
|
main.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
from collections.abc import AsyncIterator
|
5 |
+
from contextlib import asynccontextmanager
|
6 |
+
|
7 |
+
from fastapi import FastAPI, Query
|
8 |
+
from fastapi.responses import FileResponse
|
9 |
+
from fastapi.staticfiles import StaticFiles
|
10 |
+
from fastapi_cache import FastAPICache
|
11 |
+
from fastapi_cache.backends.inmemory import InMemoryBackend
|
12 |
+
from fastapi_cache.coder import PickleCoder
|
13 |
+
from fastapi_cache.decorator import cache
|
14 |
+
import logging
|
15 |
+
|
16 |
+
from pydantic import BaseModel, Field
|
17 |
+
from typing import List, Union, Optional
|
18 |
+
from datetime import datetime
|
19 |
+
|
20 |
+
from sklearn.pipeline import Pipeline
|
21 |
+
import joblib
|
22 |
+
|
23 |
+
import pandas as pd
|
24 |
+
|
25 |
+
import httpx
|
26 |
+
from io import BytesIO
|
27 |
+
|
28 |
+
|
29 |
+
from utils.config import (
|
30 |
+
ONE_DAY_SEC,
|
31 |
+
ONE_WEEK_SEC,
|
32 |
+
ENV_PATH,
|
33 |
+
DESCRIPTION,
|
34 |
+
ALL_MODELS
|
35 |
+
)
|
36 |
+
|
37 |
+
load_dotenv(ENV_PATH)
|
38 |
+
|
39 |
+
|
40 |
+
@asynccontextmanager
|
41 |
+
async def lifespan(_: FastAPI) -> AsyncIterator[None]:
|
42 |
+
FastAPICache.init(InMemoryBackend())
|
43 |
+
yield
|
44 |
+
|
45 |
+
|
46 |
+
# FastAPI Object
|
47 |
+
app = FastAPI(
|
48 |
+
title='Yassir Eta Prediction',
|
49 |
+
version='1.0.0',
|
50 |
+
description=DESCRIPTION,
|
51 |
+
lifespan=lifespan,
|
52 |
+
)
|
53 |
+
|
54 |
+
app.mount("/assets", StaticFiles(directory="assets"), name="assets")
|
55 |
+
|
56 |
+
|
57 |
+
@app.get('/favicon.ico', include_in_schema=False)
|
58 |
+
@cache(expire=ONE_WEEK_SEC, namespace='eta_favicon') # Cache for 1 week
|
59 |
+
async def favicon():
|
60 |
+
file_name = "favicon.ico"
|
61 |
+
file_path = os.path.join(app.root_path, "assets", file_name)
|
62 |
+
return FileResponse(path=file_path, headers={"Content-Disposition": "attachment; filename=" + file_name})
|
63 |
+
|
64 |
+
|
65 |
+
# API input features
|
66 |
+
|
67 |
+
|
68 |
+
class EtaFeatures(BaseModel):
|
69 |
+
timestamp: List[datetime] = Field(
|
70 |
+
description="Timestamp: Time that the trip was started")
|
71 |
+
origin_lat: List[float] = Field(
|
72 |
+
description="Origin_lat: Origin latitude (in degrees)")
|
73 |
+
origin_lon: List[float] = Field(
|
74 |
+
description="Origin_lon: Origin longitude (in degrees)")
|
75 |
+
destination_lat: List[float] = Field(
|
76 |
+
description="Destination_lat: Destination latitude (in degrees)")
|
77 |
+
destination_lon: List[float] = Field(
|
78 |
+
description="Destination_lon: Destination longitude (in degrees)")
|
79 |
+
trip_distance: List[float] = Field(
|
80 |
+
description="Trip_distance: Distance in meters on a driving route")
|
81 |
+
|
82 |
+
|
83 |
+
class Url(BaseModel):
|
84 |
+
url: str
|
85 |
+
pipeline_url: str
|
86 |
+
|
87 |
+
|
88 |
+
class ResultData(BaseModel):
|
89 |
+
prediction: List[float]
|
90 |
+
|
91 |
+
|
92 |
+
class PredictionResponse(BaseModel):
|
93 |
+
execution_msg: str
|
94 |
+
execution_code: int
|
95 |
+
result: ResultData
|
96 |
+
|
97 |
+
|
98 |
+
class ErrorResponse(BaseModel):
|
99 |
+
execution_msg: str
|
100 |
+
execution_code: int
|
101 |
+
error: Optional[str]
|
102 |
+
|
103 |
+
|
104 |
+
logging.basicConfig(level=logging.ERROR,
|
105 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
106 |
+
|
107 |
+
|
108 |
+
# Load the model pipelines and encoder
|
109 |
+
# Cache for 1 day
|
110 |
+
@cache(expire=ONE_DAY_SEC, namespace='pipeline_resource', coder=PickleCoder)
|
111 |
+
async def load_pipeline(pipeline_url: Url) -> Pipeline:
|
112 |
+
async def url_to_data(url: Url):
|
113 |
+
async with httpx.AsyncClient() as client:
|
114 |
+
response = await client.get(url)
|
115 |
+
response.raise_for_status() # Ensure we catch any HTTP errors
|
116 |
+
# Convert response content to BytesIO object
|
117 |
+
data = BytesIO(response.content)
|
118 |
+
return data
|
119 |
+
|
120 |
+
pipeline = None
|
121 |
+
try:
|
122 |
+
pipeline: Pipeline = joblib.load(await url_to_data(pipeline_url))
|
123 |
+
except Exception as e:
|
124 |
+
logging.error(
|
125 |
+
"Omg, an error occurred in loading the pipeline resources: %s", e)
|
126 |
+
finally:
|
127 |
+
return pipeline
|
128 |
+
|
129 |
+
|
130 |
+
# Endpoints
|
131 |
+
|
132 |
+
# Status endpoint: check if api is online
|
133 |
+
@app.get('/')
|
134 |
+
@cache(expire=ONE_WEEK_SEC, namespace='eta_status_check') # Cache for 1 week
|
135 |
+
async def status_check():
|
136 |
+
return {"Status": "API is online..."}
|
137 |
+
|
138 |
+
|
139 |
+
@cache(expire=ONE_DAY_SEC, namespace='pipeline_regressor') # Cache for 1 day
|
140 |
+
async def pipeline_regressor(pipeline: Pipeline, data: EtaFeatures) -> Union[ErrorResponse, PredictionResponse]:
|
141 |
+
msg = 'Execution failed'
|
142 |
+
code = 0
|
143 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
144 |
+
'execution_code': code, 'error': None})
|
145 |
+
|
146 |
+
try:
|
147 |
+
# Create dataframe
|
148 |
+
df = pd.DataFrame.from_dict(data.__dict__)
|
149 |
+
|
150 |
+
# Make prediction
|
151 |
+
preds = pipeline.predict(df)
|
152 |
+
predictions = [float(pred) for pred in preds]
|
153 |
+
|
154 |
+
result = ResultData(**{"prediction": predictions})
|
155 |
+
|
156 |
+
msg = 'Execution was successful'
|
157 |
+
code = 1
|
158 |
+
output = PredictionResponse(
|
159 |
+
**{'execution_msg': msg,
|
160 |
+
'execution_code': code, 'result': result}
|
161 |
+
)
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
error = f"Omg, pipeline regressor failure. {e}"
|
165 |
+
output = ErrorResponse(**{'execution_msg': msg,
|
166 |
+
'execution_code': code, 'error': error})
|
167 |
+
|
168 |
+
finally:
|
169 |
+
return output
|
170 |
+
|
171 |
+
|
172 |
+
@app.post('/api/v1/eta/prediction', tags=['All Models'])
|
173 |
+
async def query_eta_prediction(data: EtaFeatures, model: str = Query('RandomForestRegressor', enum=list(ALL_MODELS.keys()))) -> Union[ErrorResponse, PredictionResponse]:
|
174 |
+
pipeline_url: Url = ALL_MODELS[model]
|
175 |
+
pipeline = await load_pipeline(pipeline_url)
|
176 |
+
output = await pipeline_regressor(pipeline, data)
|
177 |
+
return output
|
requirements.txt
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
annotated-types==0.7.0
|
2 |
+
anyio==4.4.0
|
3 |
+
appdirs==1.4.4
|
4 |
+
asgiref==3.8.1
|
5 |
+
asttokens==2.4.1
|
6 |
+
async-timeout==4.0.3
|
7 |
+
attrs==24.1.0
|
8 |
+
branca==0.7.2
|
9 |
+
cattrs==23.2.3
|
10 |
+
certifi==2024.7.4
|
11 |
+
charset-normalizer==3.3.2
|
12 |
+
click==8.1.7
|
13 |
+
colorama==0.4.6
|
14 |
+
comm==0.2.2
|
15 |
+
contourpy==1.2.1
|
16 |
+
cycler==0.12.1
|
17 |
+
debugpy==1.8.2
|
18 |
+
decorator==5.1.1
|
19 |
+
exceptiongroup==1.2.2
|
20 |
+
executing==2.0.1
|
21 |
+
faicons==0.2.2
|
22 |
+
fastapi==0.112.0
|
23 |
+
fastapi-cache2==0.2.2
|
24 |
+
fastjsonschema==2.20.0
|
25 |
+
fonttools==4.53.1
|
26 |
+
geodatasets==2024.7.0
|
27 |
+
geographiclib==2.0
|
28 |
+
geojson==3.1.0
|
29 |
+
geopandas==1.0.1
|
30 |
+
geopy==2.4.1
|
31 |
+
h11==0.14.0
|
32 |
+
htmltools==0.5.3
|
33 |
+
httpcore==1.0.5
|
34 |
+
httpx==0.27.0
|
35 |
+
idna==3.7
|
36 |
+
importlib_metadata==8.2.0
|
37 |
+
# ipykernel==6.29.5
|
38 |
+
# ipyleaflet==0.19.2
|
39 |
+
# ipython==8.18.0
|
40 |
+
# ipywidgets==8.1.3
|
41 |
+
jedi==0.19.1
|
42 |
+
Jinja2==3.1.4
|
43 |
+
joblib==1.4.2
|
44 |
+
jsonschema==4.23.0
|
45 |
+
jsonschema-specifications==2023.12.1
|
46 |
+
# jupyter_client==8.6.2
|
47 |
+
# jupyter_core==5.7.2
|
48 |
+
# jupyter-leaflet==0.19.2
|
49 |
+
# jupyterlab_widgets==3.0.11
|
50 |
+
kiwisolver==1.4.5
|
51 |
+
linkify-it-py==2.0.3
|
52 |
+
markdown-it-py==3.0.0
|
53 |
+
MarkupSafe==2.1.5
|
54 |
+
# matplotlib==3.9.1
|
55 |
+
# matplotlib-inline==0.1.7
|
56 |
+
mdit-py-plugins==0.4.1
|
57 |
+
mdurl==0.1.2
|
58 |
+
# nbformat==5.10.4
|
59 |
+
nest_asyncio==1.6.0
|
60 |
+
numpy==1.26.4
|
61 |
+
packaging==24.1
|
62 |
+
pandas==2.2.2
|
63 |
+
parso==0.8.4
|
64 |
+
patsy==0.5.6
|
65 |
+
pendulum==3.0.0
|
66 |
+
pickleshare==0.7.5
|
67 |
+
pillow==10.4.0
|
68 |
+
# pip==24.0
|
69 |
+
platformdirs==4.2.2
|
70 |
+
# plotly==5.23.0
|
71 |
+
# plotly_calplot==0.1.20
|
72 |
+
pooch==1.8.2
|
73 |
+
prompt-toolkit==3.0.36
|
74 |
+
psutil==6.0.0
|
75 |
+
pure_eval==0.2.3
|
76 |
+
pydantic==2.8.2
|
77 |
+
pydantic_core==2.20.1
|
78 |
+
Pygments==2.18.0
|
79 |
+
PyJWT==2.9.0
|
80 |
+
pyogrio==0.9.0
|
81 |
+
pyparsing==3.1.2
|
82 |
+
pyproj==3.6.1
|
83 |
+
python-dateutil==2.9.0.post0
|
84 |
+
python-dotenv==1.0.1
|
85 |
+
python-multipart==0.0.9
|
86 |
+
pytz==2023.4
|
87 |
+
# pywin32==306
|
88 |
+
pyzmq==26.0.3
|
89 |
+
questionary==2.0.1
|
90 |
+
referencing==0.35.1
|
91 |
+
requests==2.32.3
|
92 |
+
requests-cache==1.2.1
|
93 |
+
rpds-py==0.19.1
|
94 |
+
rsconnect_python==1.24.0
|
95 |
+
scikit-learn==1.5.1
|
96 |
+
scipy==1.14.0
|
97 |
+
semver==2.13.0
|
98 |
+
setuptools==71.0.4
|
99 |
+
shapely==2.0.5
|
100 |
+
shiny==1.0.0
|
101 |
+
shinywidgets==0.3.2
|
102 |
+
six==1.16.0
|
103 |
+
sniffio==1.3.1
|
104 |
+
stack-data==0.6.2
|
105 |
+
starlette==0.37.2
|
106 |
+
statsmodels==0.14.2
|
107 |
+
tenacity==9.0.0
|
108 |
+
threadpoolctl==3.5.0
|
109 |
+
time-machine==2.15.0
|
110 |
+
tornado==6.4.1
|
111 |
+
traitlets==5.14.3
|
112 |
+
traittypes==0.2.1
|
113 |
+
typing_extensions==4.12.2
|
114 |
+
tzdata==2024.1
|
115 |
+
uc-micro-py==1.0.3
|
116 |
+
url-normalize==1.4.3
|
117 |
+
urllib3==2.2.2
|
118 |
+
uvicorn==0.30.4
|
119 |
+
watchfiles==0.22.0
|
120 |
+
wcwidth==0.2.13
|
121 |
+
websockets==12.0
|
122 |
+
wheel==0.43.0
|
123 |
+
widgetsnbextension==4.0.11
|
124 |
+
xgboost==2.1.1
|
125 |
+
xyzservices==2024.6.0
|
126 |
+
zipp==3.19.2
|
utils/__init__.py
ADDED
File without changes
|
utils/config.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
# ENV when using standalone uvicorn server running FastAPI in api directory
|
4 |
+
ENV_PATH = Path("../env/online.env")
|
5 |
+
|
6 |
+
ONE_DAY_SEC = 24*60*60
|
7 |
+
|
8 |
+
ONE_WEEK_SEC = ONE_DAY_SEC*7
|
9 |
+
|
10 |
+
PIPELINE_FUNCTION_URL = ""
|
11 |
+
|
12 |
+
RANDOM_FOREST_URL = "https://drive.google.com/uc?export=download&id=1t0RRzAbtW7Y1lAz4ddB5iY_0SIpfdHbB"
|
13 |
+
|
14 |
+
XGBOOST_URL = "https://raw.githubusercontent.com/valiantezabuku/Yassir-ETA-Prediction-Challenge-For-Azubian-Team-Curium/main/Models/XGBRegressor.joblib"
|
15 |
+
|
16 |
+
ADABOOST_URL = "https://raw.githubusercontent.com/valiantezabuku/Yassir-ETA-Prediction-Challenge-For-Azubian-Team-Curium/main/Models/AdaBoostRegressor.joblib"
|
17 |
+
|
18 |
+
GRADIENT_BOOST_URL = "https://raw.githubusercontent.com/valiantezabuku/Yassir-ETA-Prediction-Challenge-For-Azubian-Team-Curium/main/Models/GradientBoostingRegressor.joblib"
|
19 |
+
|
20 |
+
HISTGRADIENT_BOOST_URL = "https://raw.githubusercontent.com/valiantezabuku/Yassir-ETA-Prediction-Challenge-For-Azubian-Team-Curium/main/Models/HistGradientBoostingRegressor.joblib"
|
21 |
+
|
22 |
+
DECISION_TREE_URL = "https://raw.githubusercontent.com/valiantezabuku/Yassir-ETA-Prediction-Challenge-For-Azubian-Team-Curium/main/Models/DecisionTreeRegressor.joblib"
|
23 |
+
|
24 |
+
LINEAR_REG_URL = "https://raw.githubusercontent.com/valiantezabuku/Yassir-ETA-Prediction-Challenge-For-Azubian-Team-Curium/main/Models/LinearRegression.joblib"
|
25 |
+
|
26 |
+
|
27 |
+
ALL_MODELS = {
|
28 |
+
"AdaBoostRegressor": ADABOOST_URL,
|
29 |
+
"DecisionTreeRegressor": DECISION_TREE_URL,
|
30 |
+
"GradientBoostingRegressor": GRADIENT_BOOST_URL,
|
31 |
+
"HistGradientBoostingRegressor": HISTGRADIENT_BOOST_URL,
|
32 |
+
"LinearRegression": LINEAR_REG_URL,
|
33 |
+
"RandomForestRegressor": RANDOM_FOREST_URL,
|
34 |
+
"XGBRegressor": XGBOOST_URL
|
35 |
+
}
|
36 |
+
|
37 |
+
DESCRIPTION = """
|
38 |
+
This API accurately predicts the estimated time of arrival at the dropoff point for a single Yassir journey using `Random Forest model` and `XGBoost model`.\n
|
39 |
+
|
40 |
+
The models were trained on [The Yassir Eta datasets at Zindi Africa](https://zindi.africa/competitions/yassir-eta-prediction-challenge-for-azubian/data).\n
|
41 |
+
|
42 |
+
### Features
|
43 |
+
`Timestamp:` Time that the trip was started\n
|
44 |
+
`Origin_lat:` Origin latitude (in degrees)\n
|
45 |
+
`Origin_lon:` Origin longitude (in degrees)\n
|
46 |
+
`Destination_lat:` Destination latitude (in degrees)\n
|
47 |
+
`Destination_lon:` Destination longitude (in degrees)\n
|
48 |
+
`Trip_distance:` Distance in meters on a driving route\n
|
49 |
+
|
50 |
+
#### Weather Features
|
51 |
+
Daily weather summaries, based on data from the ERA5 dataset.\n
|
52 |
+
`date:` ..\n
|
53 |
+
`dewpoint_2m_temperature:` ..\n
|
54 |
+
`maximum_2m_air_temperature:` ..\n
|
55 |
+
`mean_2m_air_temperature:` ..\n
|
56 |
+
`mean_sea_level_pressure:` ..\n
|
57 |
+
`minimum_2m_air_temperature:` ..\n
|
58 |
+
`surface_pressure:` ..\n
|
59 |
+
`total_precipitation:` ..\n
|
60 |
+
`u_component_of_wind_10m:` ..\n
|
61 |
+
`v_component_of_wind_10m:` ..\n
|
62 |
+
|
63 |
+
### Results
|
64 |
+
**ETA prediction:** Estimated trip time in seconds\n
|
65 |
+
|
66 |
+
|
67 |
+
### Explore the frontend data application
|
68 |
+
To explore the fontend application (built-with streamlit) click the link below.\n
|
69 |
+
🚗[Yassir frontend](/https://hugginface-yassir)
|
70 |
+
|
71 |
+
|
72 |
+
Made with 💖 [Team Curium](#)
|
73 |
+
"""
|