Spaces:
Sleeping
Sleeping
Upload tryon_inference.py
Browse files- tryon_inference.py +124 -0
tryon_inference.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
from diffusers.utils import load_image, check_min_version
|
4 |
+
from diffusers import FluxPriorReduxPipeline, FluxFillPipeline
|
5 |
+
from diffusers import FluxTransformer2DModel
|
6 |
+
import numpy as np
|
7 |
+
from torchvision import transforms
|
8 |
+
|
9 |
+
def run_inference(
|
10 |
+
image_path,
|
11 |
+
mask_path,
|
12 |
+
garment_path,
|
13 |
+
size=(576, 768),
|
14 |
+
num_steps=50,
|
15 |
+
guidance_scale=30,
|
16 |
+
seed=42,
|
17 |
+
pipe=None
|
18 |
+
):
|
19 |
+
# Build pipeline
|
20 |
+
if pipe is None:
|
21 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
22 |
+
"xiaozaa/catvton-flux-alpha",
|
23 |
+
torch_dtype=torch.bfloat16
|
24 |
+
)
|
25 |
+
pipe = FluxFillPipeline.from_pretrained(
|
26 |
+
"black-forest-labs/FLUX.1-dev",
|
27 |
+
transformer=transformer,
|
28 |
+
torch_dtype=torch.bfloat16
|
29 |
+
).to("cuda")
|
30 |
+
else:
|
31 |
+
pipe.to("cuda")
|
32 |
+
|
33 |
+
pipe.transformer.to(torch.bfloat16)
|
34 |
+
|
35 |
+
# Add transform
|
36 |
+
transform = transforms.Compose([
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize([0.5], [0.5]) # For RGB images
|
39 |
+
])
|
40 |
+
mask_transform = transforms.Compose([
|
41 |
+
transforms.ToTensor()
|
42 |
+
])
|
43 |
+
|
44 |
+
# Load and process images
|
45 |
+
print("image_path", image_path)
|
46 |
+
image = load_image(image_path).convert("RGB").resize(size)
|
47 |
+
mask = load_image(mask_path).convert("RGB").resize(size)
|
48 |
+
garment = load_image(garment_path).convert("RGB").resize(size)
|
49 |
+
|
50 |
+
# Transform images using the new preprocessing
|
51 |
+
image_tensor = transform(image)
|
52 |
+
mask_tensor = mask_transform(mask)[:1] # Take only first channel
|
53 |
+
garment_tensor = transform(garment)
|
54 |
+
|
55 |
+
# Create concatenated images
|
56 |
+
inpaint_image = torch.cat([garment_tensor, image_tensor], dim=2) # Concatenate along width
|
57 |
+
garment_mask = torch.zeros_like(mask_tensor)
|
58 |
+
extended_mask = torch.cat([garment_mask, mask_tensor], dim=2)
|
59 |
+
|
60 |
+
prompt = f"The pair of images highlights a clothing and its styling on a model, high resolution, 4K, 8K; " \
|
61 |
+
f"[IMAGE1] Detailed product shot of a clothing" \
|
62 |
+
f"[IMAGE2] The same cloth is worn by a model in a lifestyle setting."
|
63 |
+
|
64 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
65 |
+
|
66 |
+
result = pipe(
|
67 |
+
height=size[1],
|
68 |
+
width=size[0] * 2,
|
69 |
+
image=inpaint_image,
|
70 |
+
mask_image=extended_mask,
|
71 |
+
num_inference_steps=num_steps,
|
72 |
+
generator=generator,
|
73 |
+
max_sequence_length=512,
|
74 |
+
guidance_scale=guidance_scale,
|
75 |
+
prompt=prompt,
|
76 |
+
).images[0]
|
77 |
+
|
78 |
+
# Split and save results
|
79 |
+
width = size[0]
|
80 |
+
garment_result = result.crop((0, 0, width, size[1]))
|
81 |
+
tryon_result = result.crop((width, 0, width * 2, size[1]))
|
82 |
+
|
83 |
+
|
84 |
+
return garment_result, tryon_result
|
85 |
+
|
86 |
+
def main():
|
87 |
+
parser = argparse.ArgumentParser(description='Run FLUX virtual try-on inference')
|
88 |
+
parser.add_argument('--image', required=True, help='Path to the model image')
|
89 |
+
parser.add_argument('--mask', required=True, help='Path to the agnostic mask')
|
90 |
+
parser.add_argument('--garment', required=True, help='Path to the garment image')
|
91 |
+
parser.add_argument('--output-garment', default='flux_inpaint_garment.png', help='Output path for garment result')
|
92 |
+
parser.add_argument('--output-tryon', default='flux_inpaint_tryon.png', help='Output path for try-on result')
|
93 |
+
parser.add_argument('--steps', type=int, default=50, help='Number of inference steps')
|
94 |
+
parser.add_argument('--guidance-scale', type=float, default=30, help='Guidance scale')
|
95 |
+
parser.add_argument('--seed', type=int, default=0, help='Random seed')
|
96 |
+
parser.add_argument('--width', type=int, default=768, help='Width')
|
97 |
+
parser.add_argument('--height', type=int, default=576, help='Height')
|
98 |
+
|
99 |
+
args = parser.parse_args()
|
100 |
+
|
101 |
+
check_min_version("0.30.2")
|
102 |
+
|
103 |
+
garment_result, tryon_result = run_inference(
|
104 |
+
image_path=args.image,
|
105 |
+
mask_path=args.mask,
|
106 |
+
garment_path=args.garment,
|
107 |
+
output_garment_path=args.output_garment,
|
108 |
+
output_tryon_path=args.output_tryon,
|
109 |
+
num_steps=args.steps,
|
110 |
+
guidance_scale=args.guidance_scale,
|
111 |
+
seed=args.seed,
|
112 |
+
size=(args.width, args.height)
|
113 |
+
)
|
114 |
+
output_garment_path=args.output_garment,
|
115 |
+
output_tryon_path=args.output_tryon,
|
116 |
+
|
117 |
+
if output_garment_path is not None:
|
118 |
+
garment_result.save(output_garment_path)
|
119 |
+
tryon_result.save(output_tryon_path)
|
120 |
+
|
121 |
+
print("Successfully saved garment and try-on images")
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
main()
|