Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
st.markdown("### A dummy site for classifying article topics by title and abstract.")
|
6 |
+
st.markdown("It can predict the following topics: Computer Science, Economics, Electrical Engineering and Systems Science, Mathematics, Quantitative Biology, Quantitative Finance, Statistics, Physics")
|
7 |
+
|
8 |
+
|
9 |
+
from transformers import pipeline
|
10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
+
|
12 |
+
@st.cache(suppress_st_warning=True)
|
13 |
+
def model_tokenizer():
|
14 |
+
model_name = 'distilbert-base-cased'
|
15 |
+
#tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased", problem_type="multi_label_classification")
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-cased", num_labels=8, problem_type="multi_label_classification")
|
17 |
+
weights = torch.load('model.pt', map_location=torch.device('cpu'))
|
18 |
+
model.load_state_dict(weights)
|
19 |
+
return model#, tokenizer
|
20 |
+
|
21 |
+
def make_prediction(model, tokenizer, text):
|
22 |
+
#print(text)
|
23 |
+
tokens = tokenizer.encode(text)
|
24 |
+
with torch.no_grad():
|
25 |
+
logits = model.cpu()(torch.as_tensor([tokens]))[0]
|
26 |
+
#print(logits)
|
27 |
+
probs = np.array(torch.softmax(logits[-1, :], dim=-1))
|
28 |
+
#print(probs)
|
29 |
+
|
30 |
+
sorted_classes, sorted_probs = np.flip(np.argsort(probs)), sorted(probs, reverse=True)
|
31 |
+
prediction_classes, prediction_probs = [], []
|
32 |
+
probs_sum = 0
|
33 |
+
i=0
|
34 |
+
res = []
|
35 |
+
while probs_sum <= 0.95:
|
36 |
+
# print(i)
|
37 |
+
# print(sorted_classes)
|
38 |
+
# print(sorted_classes[i])
|
39 |
+
# print(to_category)
|
40 |
+
# print(sorted_classes[i], to_category[sorted_classes[i]])
|
41 |
+
prediction_classes.append(to_category[sorted_classes[i]])
|
42 |
+
prediction_probs.append(100*sorted_probs[i])
|
43 |
+
probs_sum += sorted_probs[i]
|
44 |
+
i += 1
|
45 |
+
for pr, cl in zip(prediction_probs, prediction_classes):
|
46 |
+
print(str("{:.2f}".format(pr) + "%"), cl)
|
47 |
+
res.append((str("{:.2f}".format(pr) + "%"), cl))
|
48 |
+
return res
|
49 |
+
|
50 |
+
model = model_tokenizer()
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased", problem_type="multi_label_classification")
|
52 |
+
|
53 |
+
categories_full = ['Computer Science', 'Economics', 'Electrical Engineering and Systems Science', 'Mathematics', 'Quantitative Biology', 'Quantitative Finance', 'Statistics', 'Physics']
|
54 |
+
|
55 |
+
to_category = {}
|
56 |
+
|
57 |
+
for i in range(len(categories_full)):
|
58 |
+
to_category[i] = categories_full[i]
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
title = st.text_area("Type the title of the article here")
|
63 |
+
abstract = st.text_area("Type the abstract of the article here")
|
64 |
+
|
65 |
+
|
66 |
+
if st.button('Analyse'):
|
67 |
+
if title or abstract:
|
68 |
+
text = '[TITLE] ' + title + ' [ABSTRACT] ' + abstract
|
69 |
+
res = make_prediction(model, tokenizer, text)
|
70 |
+
for cat in res:
|
71 |
+
st.markdown(f"{cat[0], cat[1]}")
|
72 |
+
else:
|
73 |
+
st.error(f"Write title or abstract")
|
74 |
+
|
75 |
+
#st.markdown(f"{make_prediction(model, tokenizer, text)}")
|