fyang0507 commited on
Commit
de3603e
·
1 Parent(s): 0f62408
My_Notion_Companion.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Entry point to Streamlit UI.
2
+
3
+ Ref: https://docs.streamlit.io/get-started/tutorials/create-a-multipage-app
4
+ """
5
+
6
+ from pathlib import Path
7
+ from typing import Dict
8
+
9
+ import streamlit as st
10
+
11
+
12
+ def welcome_message() -> Dict[str, str]:
13
+ return {
14
+ "role": "assistant",
15
+ "content": "Welcome to My Notion Companion.",
16
+ }
17
+
18
+
19
+ def main():
20
+
21
+ st.set_page_config(
22
+ page_title="My Notion Companion",
23
+ page_icon="🤖",
24
+ )
25
+
26
+ st.title("My Notion Companion 🤖")
27
+ st.caption(
28
+ "A conversational RAG that helps to chat with my (mostly Chinese-based) Notion Databases."
29
+ )
30
+ st.caption(
31
+ "Powered by: [🦜🔗](https://www.langchain.com/), [🤗](https://huggingface.co/), [LlamaCpp](https://github.com/ggerganov/llama.cpp), [Streamlit](https://streamlit.io/)."
32
+ )
33
+
34
+ # Initialize chat history
35
+ if "messages" not in st.session_state:
36
+ st.session_state.messages = [welcome_message()]
37
+
38
+ # Display chat messages from history on app rerun
39
+ for message in st.session_state.messages:
40
+ with st.chat_message(message["role"]):
41
+ st.markdown(message["content"])
42
+
43
+ # Two buttons to control history/memory
44
+ def start_over():
45
+ st.session_state.messages = [
46
+ {"role": "assistant", "content": "Okay, let's start over."}
47
+ ]
48
+
49
+ st.sidebar.button(
50
+ "Start All Over Again", on_click=start_over, use_container_width=True
51
+ )
52
+
53
+ def clear_chat_history():
54
+ st.session_state.messages = [
55
+ {
56
+ "role": "assistant",
57
+ "content": "Retrieved documents are still in my memory. What else you want to know?",
58
+ }
59
+ ]
60
+
61
+ st.sidebar.button(
62
+ "Keep Retrieved Docs but Clear Chat History",
63
+ on_click=clear_chat_history,
64
+ use_container_width=True,
65
+ )
66
+
67
+ # Accept user input
68
+ if prompt := st.chat_input("Any questiones?"):
69
+
70
+ # Add user message to chat history
71
+ st.session_state.messages.append({"role": "user", "content": prompt})
72
+
73
+ # Display user message in chat message container
74
+ with st.chat_message("user"):
75
+ st.markdown(prompt)
76
+
77
+ # Display assistant response in chat message container
78
+ with st.chat_message("assistant"):
79
+ # response = st.session_state.t.invoke()
80
+ response = """##### NOTES: \n\nThis is only a mock UI hosted on Hugging Face because of limited computing resources available as a freemium user.
81
+ Please check the video demo (side bar) and see how this the companion works as a standalone offline webapp.\n\nAlternatively,
82
+ please visit the [GitHub page](https://github.com/fyang0507/my-notion-companion/tree/main) and follow the quickstart guide to build your own!
83
+ """
84
+ st.write(response)
85
+ st.session_state.messages.append({"role": "assistant", "content": response})
86
+
87
+ if __name__ == "__main__":
88
+ main()
pages/2_Technical_Implementation.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+
4
+ st.set_page_config(
5
+ page_title="Implementation",
6
+ page_icon="⚙️",
7
+ )
8
+ st.markdown("## What's under the hood? ⚙️")
9
+
10
+ st.markdown(
11
+ """
12
+ My Notion Companion is a LLM-powered conversational RAG to chat with documents from Notion.
13
+ It uses hybrid search (lexical + semantic) search to find the relevant documents and a chat interface to interact with the docs.
14
+ It uses only **open-sourced technologies** and can **run on a single Mac Mini**.
15
+
16
+ Empowering technologies:
17
+ - **The Framework**: uses [Langchain](https://python.langchain.com/docs/)
18
+ - **The LLM**: uses 🤗-developed [`HuggingFaceH4/zephyr-7b-beta`](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). It has great inference speed, bilingual and instruction following capabilities
19
+ - **The Datastores**: the documents were stored into both conventional lexical data form and embeeding-based vectorstore (uses [Redis](https://python.langchain.com/docs/integrations/vectorstores/redis))
20
+ - **The Embedding Model**: uses [`sentence-transformers/distiluse-base-multilingual-cased-v1`](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1). It has great inference speed and bilingual capability
21
+ - **The Tokenizers**: uses 🤗's [`AutoTokenizer`](AutoTokenizer) and Chinese text segmentation tool [`jieba`](https://github.com/fxsjy/jieba) (only in lexical search)
22
+ - **The Lexical Search Tool**: uses [`rank_bm25`](https://github.com/dorianbrown/rank_bm25)
23
+ - **The Computing**: uses [LlamaCpp](https://github.com/ggerganov/llama.cpp) to power the LLM in the local machine (a Mac Mini with M2 Pro chip)
24
+ - **The Observability Tool**: uses [LangSmith](https://docs.smith.langchain.com/)
25
+ - **The UI**: uses [Streamlit](https://docs.streamlit.io/)
26
+ """
27
+ )
28
+
29
+
30
+ st.markdown(
31
+ """
32
+ #### The E2E Pipeline
33
+
34
+ - When a user enters a prompt, the assistant will try lexical search first
35
+ - a query analyzer will analyze the query and extract keywords (for search) and domains (for metadata filtering)
36
+ - the extracted domains will be compared against the metadata of documents, only those with a matched metadata will be retrieved
37
+ - the keyword will be segmented into searchable tokens, then further compared against the metadata-filtered documents with BM25 lexical search algorithm
38
+ - The fetched documents will be subject to a final match checker to ensure relevance
39
+ - If lexical search doesn't return enough documents, the assistant will then try semantic search into the Redis vectorstore. Retrieved docs will also subject the QA by match checker.
40
+ - All retrieved documents will be sent to LLM as part of a system prompt, the LLM will then act as a conversational RAG to chat with the user with knowledges from the provided documents
41
+
42
+ """
43
+ )
44
+
45
+ st.image("resources/flowchart.png", caption="E2E workflow")
46
+
47
+
48
+ st.markdown(
49
+ """
50
+ #### Selecting the right LLM
51
+
52
+ I have compared a wide range of Bi/Multi-lingual LLMs with 7B parameters that has a LlamaCpp-friendly gguf executable on HuggingFace (which can fit onto Mac Mini's GPU).
53
+
54
+ I created conversational test cases to assess the models' instruction following, reasoning, helpfulness, coding, hallucinations and inference speed.
55
+ Qwen models (Qwen 1.0 & 1.5), together with HuggingFace's zephyr-7b-beta come as the top 3, but Qwen models are overly creative and do not follow few-shot examples.
56
+ Thus, the final candidate goes to **zephyr**.
57
+
58
+ Access the complete LLM evaluation results [here](https://docs.google.com/spreadsheets/d/1OZKu6m0fHPYkbf9SBV6UUOE_flgBG7gphgyo2rzOpsU/edit?usp=sharing).
59
+ """
60
+ )
61
+
62
+ df_llm = pd.read_csv("resources/llm_scores.csv", index_col=0)
63
+
64
+ st.dataframe(df_llm)
65
+
66
+ st.markdown(
67
+ """
68
+ #### Selecting the right LLM Computing Platform
69
+
70
+ I tested [Ollama](https://ollama.com/) first given its integrated, worry-free experiences that abstracted away the complexity of building environments and downloading LLMs.
71
+ However, I hit some unresponsiveness when experimenting with different LLMs and switched to [LlamaCpp](https://github.com/ggerganov/llama.cpp) (one layer deeper as the empowering backend for Ollama)
72
+
73
+ It works great so I sticked around.
74
+ """
75
+ )
76
+
77
+ st.markdown(
78
+ """
79
+ #### Selecting the right Vectordatabase
80
+
81
+ Langchain supports a huge number of vectordatabases. Because I don't have any scalability concerns (<300 docs in total),
82
+ I target on easiness, can run in local machine, supports to offload data into disk, and metadata fuzzy match.
83
+
84
+ Redis ended up being the only option that satisfies all the criteria.
85
+ """
86
+ )
87
+
88
+ df_vs = pd.read_csv("resources/vectordatabase_evaluation.csv", index_col=0)
89
+
90
+ st.dataframe(df_vs)
91
+
92
+ st.markdown(
93
+ """
94
+ #### Selecting the right Embedding Model
95
+
96
+ Many companies have released their embeddings models. Our search begins with bi/multi-lingual embedding models
97
+ developed by top-tier tech companies and research labs, with sizes from 500MB-2.2GB.
98
+
99
+ Our evaluation dataset contains hand-crafted question-document pairs. Where the document contains the information to answer the associated question.
100
+ Similar to [**CLIP**](https://openai.com/research/clip) method, I uses a "contrastive loss function" to evaluate the model such that we maximize the differences between paired and unpaired question-doc pairs.
101
+
102
+ ```
103
+ loss = np.abs(
104
+ cos_sim(embedding(q), embedding(doc_paired)) -
105
+ np.mean(cos_sim(embedding(q), embedding(doc_unpaired)))
106
+ )
107
+ ```
108
+
109
+ In addition, I also considers model size and loading/inference speed for each model.
110
+
111
+ `sentence-transformers/distiluse-base-multilingual-cased-v1` turns out to be the best candidate with the top-class inference speed and best contrastive loss.
112
+
113
+ Check the evaluation notebook [here](https://github.com/fyang0507/my-notion-companion/blob/main/playground/evaluate_embedding_models.ipynb).
114
+ """
115
+ )
116
+
117
+ df_embedding = pd.read_csv("resources/embedding_model_scores.csv", index_col=0)
118
+
119
+ st.dataframe(df_embedding)
120
+
121
+
122
+ st.markdown(
123
+ """
124
+ #### Selecting the right Observability Tool
125
+
126
+ Langchain ecosystem comes with its own [LangSmith](https://www.langchain.com/langsmith) observability tool. It works out of the box with minimal added configurations and requires no change in codes.
127
+
128
+ LLM responses are somtimes unpredictable (especially a small 7B model, with multilingual capability), and it only gets more complex as we build the application as a LLM-chain.
129
+ Below is a single observability trace recorded in LangSmith with a single query "谁曾在步行者队效力?从“写作”中找答案。" (Who plays in Indiana Pacers? Find the answer from Articles.)
130
+
131
+ LangSmith helps organize the LLM calls and captures the I/O along the process, making the head-scratching debugging process much less misearble.
132
+ """
133
+ )
134
+
135
+ st.video("resources/langsmith_walkthrough.mp4")
136
+
137
+
138
+ st.markdown(
139
+ """
140
+ #### Selecting the right UI
141
+
142
+ [Streamlit](https://docs.streamlit.io/) and [Gradio](https://www.gradio.app/docs/) are among the popular options to share a LLM-based application.
143
+
144
+ I chose Streamlit for its script-writing development experience and integrated webapp-like UI that supports multi-page app creation.
145
+ """
146
+ )
147
+
148
+ st.markdown(
149
+ """
150
+ #### Appendix: Project Working Log and Feature Tracker
151
+
152
+ - [GitHub Homepage](https://github.com/fyang0507/my-notion-companion)
153
+ - [Working Log](https://fredyang0507.notion.site/MyNotionCompanion-ce12513756784d2ab15015582538825e?pvs=4)
154
+ - [Feature Tracker](https://fredyang0507.notion.site/306e21cfd9fa49b68f7160b2f6692f72?v=789f8ef443f44c96b7cc5f0c99a3a773&pvs=4)
155
+ """
156
+ )
pages/3_Motivation.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Ref: https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
3
+ """
4
+
5
+ import streamlit as st
6
+
7
+ st.set_page_config(
8
+ page_title="Motivation",
9
+ page_icon="🤨",
10
+ )
11
+
12
+ st.markdown("## So Fred, why did you start this project? 🤨")
13
+
14
+ st.markdown(
15
+ """
16
+ As much as I've been a very loyal (but freemium) Notion user, search func in Notion **sucks**. It supports only discrete keyword search with exact match (e.g. it treats Taylor Swift as two words).
17
+
18
+ What's even worse is that most of my documents are in Chinese. Most Chinese words consist of
19
+ multiple characters. If you break them up, you end up with a total different meaning ("上海"=Shanghai, "上"=up,"海"=ocean).
20
+ """
21
+ )
22
+
23
+ st.image(
24
+ "resources/search-limit-chinese.png",
25
+ caption="tried to search for 天马 Pegasus, but it ends up with searching two discrete characters 天 sky and 马 horse",
26
+ )
27
+
28
+ st.markdown(
29
+ """
30
+ My Notion Compnion is here to help me achieve two things:
31
+ - to have an improved search experience across my notion databases (200+ documents)
32
+ - to chat with my Notion documents in natural language
33
+ """
34
+ )