Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import timm
|
3 |
-
import
|
4 |
-
import faiss
|
5 |
import pandas as pd
|
6 |
|
7 |
|
@@ -11,28 +10,29 @@ DESCRIPTION = """
|
|
11 |
"""
|
12 |
|
13 |
model = timm.create_model(f"hf_hub:SmilingWolf/wd-eva02-large-tagger-v3", pretrained=True)
|
14 |
-
head = model.head.weight.data
|
15 |
del model
|
16 |
df = pd.read_csv(f"https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3/resolve/main/selected_tags.csv")
|
17 |
id2label = df["name"].to_dict()
|
18 |
label2id = {v:k for k,v in id2label.items()}
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
k = 50
|
28 |
-
target_id = label2id[target_tag]
|
29 |
-
distances, indices = index.search(query, k)
|
30 |
-
return {id2label[indice]:distance for indice, distance in zip(indices[0], distances[0])}
|
31 |
|
32 |
demo = gr.Interface(
|
33 |
fn=predict,
|
34 |
inputs=[
|
35 |
-
gr.
|
|
|
36 |
],
|
37 |
outputs=gr.Label(num_top_classes=50),
|
38 |
title=TITLE,
|
|
|
1 |
import gradio as gr
|
2 |
import timm
|
3 |
+
import torch
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
|
|
|
10 |
"""
|
11 |
|
12 |
model = timm.create_model(f"hf_hub:SmilingWolf/wd-eva02-large-tagger-v3", pretrained=True)
|
13 |
+
head = model.head.weight.data
|
14 |
del model
|
15 |
df = pd.read_csv(f"https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3/resolve/main/selected_tags.csv")
|
16 |
id2label = df["name"].to_dict()
|
17 |
label2id = {v:k for k,v in id2label.items()}
|
18 |
+
general_tags = df[df["category"] == 0].index
|
19 |
+
character_tags = df[df["category"] == 4].index
|
20 |
+
all_tags = df.index
|
21 |
|
22 |
+
def predict(target_tags, search_in):
|
23 |
+
target_tags = [tag.strip().replace(" ", "_") for tag in target_tags.split(",")]
|
24 |
+
target_ids = [label2id[tag] for tag in target_tags]
|
25 |
+
query = head[target_ids].unsqueeze(1)
|
26 |
|
27 |
+
sim = torch.cosine_similarity(query, head.unsqueeze(0), dim=2).mean(dim=0)
|
28 |
+
tags = general_tags if search_in == "general" else character_tags if search_in == "character" else all_tags
|
29 |
+
return {id2label[i]: sim[i].item() for i in tags}
|
|
|
|
|
|
|
|
|
30 |
|
31 |
demo = gr.Interface(
|
32 |
fn=predict,
|
33 |
inputs=[
|
34 |
+
gr.Text(value="pink hair, braid", label="Target tags"),
|
35 |
+
gr.Dropdown(["all", "general", "character"], label="Search in", value="all")
|
36 |
],
|
37 |
outputs=gr.Label(num_top_classes=50),
|
38 |
title=TITLE,
|