Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,8 @@ from transformers import pipeline, AutoTokenizer, AutoModel
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
9 |
model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
10 |
|
11 |
-
title = "OPT-
|
12 |
-
description = "This demo uses meta's opt-
|
13 |
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>"
|
14 |
|
15 |
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
9 |
model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
10 |
|
11 |
+
title = "OPT-1.3B"
|
12 |
+
description = "This demo uses meta's opt-1.3b Causal LM as base model that was prompt tuned on the Stanford Sentiment Treebank-5 way dataset to only output the sentiment of a given text."
|
13 |
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>"
|
14 |
|
15 |
|