funnyPhani commited on
Commit
827697f
1 Parent(s): 743bee3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -5
app.py CHANGED
@@ -1,7 +1,60 @@
1
- import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
1
+ def data_summarizer(input_eng):
2
+ try:
3
+ import requests
4
+ from bs4 import BeautifulSoup
5
+ from googletrans import Translator
6
+ import warnings
7
+ from transformers import pipeline
8
+ # sentiment = pipeline("sentiment-analysis")
9
+ from transformers import PegasusForConditionalGeneration, AutoTokenizer
10
+ tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
11
+ warnings.filterwarnings("ignore")
12
+ # from gensim.summarization.summarizer import summarize
13
+ from gensim.summarization import keywords
14
+ from textblob import TextBlob
15
+ translator = Translator()
16
+ # from transformers import pipeline
17
+ # summarizer = pipeline("summarization")
18
+ from transformers import PegasusForConditionalGeneration, PegasusTokenizer
19
+ from transformers import PegasusForConditionalGeneration, AutoTokenizer
20
+ tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
21
+ # tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
22
+ model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
23
+ translation=translator.translate(input_eng, dest = "en")
24
+ tokens = tokenizer(translation.text, truncation=True, padding="longest", return_tensors="pt")
25
+ # Summarize
26
+ summary = model.generate(**tokens)
27
+ # Decode summary
28
+ text = tokenizer.decode(summary[0]).replace("<pad> ","").replace("</s>","")
29
+ # summary = summarizer(translation.text)
30
+ # print(summary[0]['summary_text'])
31
+ translator = Translator()
32
+ # text = summary[0]['summary_text']
33
+ # print(keywords(text,words = 5,lemmatize=False))
34
+ key = keywords(text,words = 5,lemmatize=False)
35
+ # print(key)
36
+ translator = Translator()
37
+ keys = translator.translate(key, dest = translator.detect(input_eng).lang)
38
+ # print("keywords".center(50,"-"))
39
+ # print(keys.text,end = " ")
40
+ translator = Translator()
41
+ out = translator.translate(text, dest = translator.detect(input_eng).lang)
42
+ # senti = sentiment(text)[0]['label']
43
+ analysis=TextBlob(text)
44
+ #print(analysis.polarity)
45
+ # print(analysis.sentiment)
46
+ # print(f"Sentiment: {'Positive' if analysis.polarity > 0 else 'Negative' if analysis.polarity < 0 else 'Neutral' }")
47
+ # return {"Output_summary :":out.text,"Keywords":keys.text.replace("\n",","),"Sentiment":f"{'Positive' if analysis.polarity > 0 else 'Negative' if analysis.polarity < 0 else 'Neutral' }"}
48
+ # print(translation.text)
49
+ # print(translation.extra_data)
50
+ return f"{'Positive' if analysis.polarity > 0 else 'Negative' if analysis.polarity < 0 else 'Neutral' }", keys.text.replace("\n",","), out.text.strip()
51
 
52
+ except Exception as e:
53
+ raise e
54
 
55
+ # input_eng = input()
56
+ # data_summarizer(input_eng)
57
+ import gradio as gr
58
+ interface = gr.Interface(fn=data_summarizer,
59
+ inputs=gr.inputs.Textbox(lines=20, placeholder='Past your input text...'),outputs=['text',"text","text"])
60
+ interface.launch(inline = False)