FC-CLIP / fcclip /data /datasets /register_pascal_ctx_459_sem_seg.py
yucornetto's picture
init for demo
b6396ac
raw
history blame
2.42 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import numpy as np
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets import load_sem_seg
from . import openseg_classes
PASCAL_CTX_459_CATEGORIES=openseg_classes.get_pascal_ctx_459_categories_with_prompt_eng()
PASCAL_CTX_459_COLORS = [k["color"] for k in PASCAL_CTX_459_CATEGORIES]
MetadataCatalog.get("openvocab_pascal_ctx459_sem_seg_train").set(
stuff_colors=PASCAL_CTX_459_COLORS[:],
)
MetadataCatalog.get("openvocab_pascal_ctx459_sem_seg_val").set(
stuff_colors=PASCAL_CTX_459_COLORS[:],
)
def _get_ctx459_meta():
# Id 0 is reserved for ignore_label, we change ignore_label for 0
# to 255 in our pre-processing, so all ids are shifted by 1.
stuff_ids = [k["id"] for k in PASCAL_CTX_459_CATEGORIES]
assert len(stuff_ids) == 459, len(stuff_ids)
# For semantic segmentation, this mapping maps from contiguous stuff id
# (in [0, 91], used in models) to ids in the dataset (used for processing results)
stuff_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(stuff_ids)}
stuff_classes = [k["name"] for k in PASCAL_CTX_459_CATEGORIES]
ret = {
"stuff_dataset_id_to_contiguous_id": stuff_dataset_id_to_contiguous_id,
"stuff_classes": stuff_classes,
}
return ret
def register_all_ctx459(root):
root = os.path.join(root, "pascal_ctx_d2")
meta = _get_ctx459_meta()
for name, dirname in [("train", "training"), ("val", "validation")]:
image_dir = os.path.join(root, "images", dirname)
gt_dir = os.path.join(root, "annotations_ctx459", dirname)
name = f"openvocab_pascal_ctx459_sem_seg_{name}"
DatasetCatalog.register(
name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="tif", image_ext="jpg")
)
MetadataCatalog.get(name).set(
stuff_classes=meta["stuff_classes"][:],
thing_dataset_id_to_contiguous_id={}, # to make Mask2Former happy
stuff_dataset_id_to_contiguous_id=meta["stuff_dataset_id_to_contiguous_id"],
image_root=image_dir,
sem_seg_root=gt_dir,
evaluator_type="sem_seg",
ignore_label=65535, # NOTE: gt is saved in 16-bit TIFF images
gt_ext="tif",
)
_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_all_ctx459(_root)