FC-CLIP / fcclip /evaluation /panoptic_evaluation.py
yucornetto's picture
init for demo
b6396ac
raw
history blame
11 kB
# Reference: https://github.com/cocodataset/panopticapi/blob/master/panopticapi/evaluation.py
# Reference: https://github.com/open-mmlab/mmdetection/pull/7538
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os, sys
import numpy as np
import json
import time
from datetime import timedelta
from collections import defaultdict
import argparse
import multiprocessing
import PIL.Image as Image
from panopticapi.utils import get_traceback, rgb2id
OFFSET = 256 * 256 * 256
VOID = 0
class PQStatCat():
def __init__(self):
self.iou = 0.0
self.tp = 0
self.fp = 0
self.fn = 0
def __iadd__(self, pq_stat_cat):
self.iou += pq_stat_cat.iou
self.tp += pq_stat_cat.tp
self.fp += pq_stat_cat.fp
self.fn += pq_stat_cat.fn
return self
class PQStat():
def __init__(self):
self.pq_per_cat = defaultdict(PQStatCat)
def __getitem__(self, i):
return self.pq_per_cat[i]
def __iadd__(self, pq_stat):
for label, pq_stat_cat in pq_stat.pq_per_cat.items():
self.pq_per_cat[label] += pq_stat_cat
return self
def pq_average(self, categories, isthing):
pq, sq, rq, n = 0, 0, 0, 0
per_class_results = {}
for label, label_info in categories.items():
if isthing is not None:
cat_isthing = label_info['isthing'] == 1
if isthing != cat_isthing:
continue
iou = self.pq_per_cat[label].iou
tp = self.pq_per_cat[label].tp
fp = self.pq_per_cat[label].fp
fn = self.pq_per_cat[label].fn
if tp + fp + fn == 0:
per_class_results[label] = {'pq': 0.0, 'sq': 0.0, 'rq': 0.0}
continue
n += 1
pq_class = iou / (tp + 0.5 * fp + 0.5 * fn)
sq_class = iou / tp if tp != 0 else 0
rq_class = tp / (tp + 0.5 * fp + 0.5 * fn)
per_class_results[label] = {'pq': pq_class, 'sq': sq_class, 'rq': rq_class}
pq += pq_class
sq += sq_class
rq += rq_class
return {'pq': pq / n, 'sq': sq / n, 'rq': rq / n, 'n': n}, per_class_results
@get_traceback
def pq_compute_single_core(proc_id, annotation_set, gt_folder, pred_folder, categories):
pq_stat = PQStat()
idx = 0
for gt_ann, pred_ann in annotation_set:
if idx % 100 == 0:
print('Core: {}, {} from {} images processed'.format(proc_id, idx, len(annotation_set)))
idx += 1
pan_gt = np.array(Image.open(os.path.join(gt_folder, gt_ann['file_name'])), dtype=np.uint32)
pan_gt = rgb2id(pan_gt)
pan_pred = np.array(Image.open(os.path.join(pred_folder, pred_ann['file_name'])), dtype=np.uint32)
pan_pred = rgb2id(pan_pred)
gt_segms = {el['id']: el for el in gt_ann['segments_info']}
pred_segms = {el['id']: el for el in pred_ann['segments_info']}
# predicted segments area calculation + prediction sanity checks
pred_labels_set = set(el['id'] for el in pred_ann['segments_info'])
labels, labels_cnt = np.unique(pan_pred, return_counts=True)
for label, label_cnt in zip(labels, labels_cnt):
if label not in pred_segms:
if label == VOID:
continue
raise KeyError('In the image with ID {} segment with ID {} is presented in PNG and not presented in JSON.'.format(gt_ann['image_id'], label))
pred_segms[label]['area'] = label_cnt
pred_labels_set.remove(label)
if pred_segms[label]['category_id'] not in categories:
raise KeyError('In the image with ID {} segment with ID {} has unknown category_id {}.'.format(gt_ann['image_id'], label, pred_segms[label]['category_id']))
if len(pred_labels_set) != 0:
raise KeyError('In the image with ID {} the following segment IDs {} are presented in JSON and not presented in PNG.'.format(gt_ann['image_id'], list(pred_labels_set)))
# confusion matrix calculation
pan_gt_pred = pan_gt.astype(np.uint64) * OFFSET + pan_pred.astype(np.uint64)
gt_pred_map = {}
labels, labels_cnt = np.unique(pan_gt_pred, return_counts=True)
for label, intersection in zip(labels, labels_cnt):
gt_id = label // OFFSET
pred_id = label % OFFSET
gt_pred_map[(gt_id, pred_id)] = intersection
# count all matched pairs
gt_matched = set()
pred_matched = set()
for label_tuple, intersection in gt_pred_map.items():
gt_label, pred_label = label_tuple
if gt_label not in gt_segms:
continue
if pred_label not in pred_segms:
continue
if gt_segms[gt_label]['iscrowd'] == 1:
continue
if gt_segms[gt_label]['category_id'] != pred_segms[pred_label]['category_id']:
continue
union = pred_segms[pred_label]['area'] + gt_segms[gt_label]['area'] - intersection - gt_pred_map.get((VOID, pred_label), 0)
iou = intersection / union
if iou > 0.5:
pq_stat[gt_segms[gt_label]['category_id']].tp += 1
pq_stat[gt_segms[gt_label]['category_id']].iou += iou
gt_matched.add(gt_label)
pred_matched.add(pred_label)
# count false positives
crowd_labels_dict = {}
for gt_label, gt_info in gt_segms.items():
if gt_label in gt_matched:
continue
# crowd segments are ignored
if gt_info['iscrowd'] == 1:
crowd_labels_dict[gt_info['category_id']] = gt_label
continue
pq_stat[gt_info['category_id']].fn += 1
# count false positives
for pred_label, pred_info in pred_segms.items():
if pred_label in pred_matched:
continue
# intersection of the segment with VOID
intersection = gt_pred_map.get((VOID, pred_label), 0)
# plus intersection with corresponding CROWD region if it exists
if pred_info['category_id'] in crowd_labels_dict:
intersection += gt_pred_map.get((crowd_labels_dict[pred_info['category_id']], pred_label), 0)
# predicted segment is ignored if more than half of the segment correspond to VOID and CROWD regions
if intersection / pred_info['area'] > 0.5:
continue
pq_stat[pred_info['category_id']].fp += 1
print('Core: {}, all {} images processed'.format(proc_id, len(annotation_set)))
return pq_stat
def pq_compute_multi_core(matched_annotations_list, gt_folder, pred_folder, categories):
cpu_num = multiprocessing.cpu_count()
annotations_split = np.array_split(matched_annotations_list, cpu_num)
print("Number of cores: {}, images per core: {}".format(cpu_num, len(annotations_split[0])))
workers = multiprocessing.Pool(processes=cpu_num)
processes = []
for proc_id, annotation_set in enumerate(annotations_split):
p = workers.apply_async(pq_compute_single_core,
(proc_id, annotation_set, gt_folder, pred_folder, categories))
processes.append(p)
# https://github.com/open-mmlab/mmdetection/pull/7538
# Close the process pool, otherwise it will lead to memory
# leaking problems.
workers.close()
workers.join()
pq_stat = PQStat()
for p in processes:
pq_stat += p.get()
return pq_stat
def pq_compute(gt_json_file, pred_json_file, gt_folder=None, pred_folder=None):
start_time = time.time()
with open(gt_json_file, 'r') as f:
gt_json = json.load(f)
with open(pred_json_file, 'r') as f:
pred_json = json.load(f)
if gt_folder is None:
gt_folder = gt_json_file.replace('.json', '')
if pred_folder is None:
pred_folder = pred_json_file.replace('.json', '')
categories = {el['id']: el for el in gt_json['categories']}
print("Evaluation panoptic segmentation metrics:")
print("Ground truth:")
print("\tSegmentation folder: {}".format(gt_folder))
print("\tJSON file: {}".format(gt_json_file))
print("Prediction:")
print("\tSegmentation folder: {}".format(pred_folder))
print("\tJSON file: {}".format(pred_json_file))
if not os.path.isdir(gt_folder):
raise Exception("Folder {} with ground truth segmentations doesn't exist".format(gt_folder))
if not os.path.isdir(pred_folder):
raise Exception("Folder {} with predicted segmentations doesn't exist".format(pred_folder))
pred_annotations = {el['image_id']: el for el in pred_json['annotations']}
matched_annotations_list = []
for gt_ann in gt_json['annotations']:
image_id = gt_ann['image_id']
if image_id not in pred_annotations:
raise Exception('no prediction for the image with id: {}'.format(image_id))
matched_annotations_list.append((gt_ann, pred_annotations[image_id]))
pq_stat = pq_compute_multi_core(matched_annotations_list, gt_folder, pred_folder, categories)
metrics = [("All", None), ("Things", True), ("Stuff", False)]
results = {}
for name, isthing in metrics:
results[name], per_class_results = pq_stat.pq_average(categories, isthing=isthing)
if name == 'All':
results['per_class'] = per_class_results
print("{:10s}| {:>5s} {:>5s} {:>5s} {:>5s}".format("", "PQ", "SQ", "RQ", "N"))
print("-" * (10 + 7 * 4))
for name, _isthing in metrics:
print("{:10s}| {:5.1f} {:5.1f} {:5.1f} {:5d}".format(
name,
100 * results[name]['pq'],
100 * results[name]['sq'],
100 * results[name]['rq'],
results[name]['n'])
)
t_delta = time.time() - start_time
print("Time elapsed: {:0.2f} seconds".format(t_delta))
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--gt_json_file', type=str,
help="JSON file with ground truth data")
parser.add_argument('--pred_json_file', type=str,
help="JSON file with predictions data")
parser.add_argument('--gt_folder', type=str, default=None,
help="Folder with ground turth COCO format segmentations. \
Default: X if the corresponding json file is X.json")
parser.add_argument('--pred_folder', type=str, default=None,
help="Folder with prediction COCO format segmentations. \
Default: X if the corresponding json file is X.json")
args = parser.parse_args()
pq_compute(args.gt_json_file, args.pred_json_file, args.gt_folder, args.pred_folder)