Spaces:
Running
on
Zero
Running
on
Zero
David Elbel
commited on
Commit
Β·
d25f5c8
1
Parent(s):
8bddfde
Deploy PyLate Document Search
Browse files- README.md +24 -6
- app.py +520 -4
- requirements.txt +18 -0
README.md
CHANGED
|
@@ -1,12 +1,30 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: PyLate Document Search
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
hardware: zero-gpu-h100
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# PyLate Document Search on ZeroGPU
|
| 14 |
+
|
| 15 |
+
A powerful document search system using ColBERT models via PyLate.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- π Upload PDF, DOCX, TXT files
|
| 20 |
+
- βοΈ Automatic text extraction and chunking
|
| 21 |
+
- π§ ColBERT-based semantic search
|
| 22 |
+
- β‘ Powered by ZeroGPU (H100)
|
| 23 |
+
|
| 24 |
+
## Usage
|
| 25 |
+
|
| 26 |
+
1. **Upload Documents**: Upload your files in the "Document Upload" tab
|
| 27 |
+
2. **Process**: Extract text and create searchable index
|
| 28 |
+
3. **Search**: Query your documents semantically
|
| 29 |
+
|
| 30 |
+
Built with PyLate and running on Hugging Face ZeroGPU.
|
app.py
CHANGED
|
@@ -1,7 +1,523 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
import sqlite3
|
| 7 |
+
import json
|
| 8 |
+
import hashlib
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import List, Dict, Any, Tuple
|
| 11 |
+
import PyPDF2
|
| 12 |
+
import docx
|
| 13 |
+
import fitz # pymupdf
|
| 14 |
+
from unstructured.partition.auto import partition
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache"
|
| 18 |
+
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# PyLate imports
|
| 22 |
+
from pylate import models, indexes, retrieve
|
| 23 |
+
|
| 24 |
+
# Global variables for PyLate components
|
| 25 |
+
model = None
|
| 26 |
+
index = None
|
| 27 |
+
retriever = None
|
| 28 |
+
metadata_db = None
|
| 29 |
+
|
| 30 |
+
# ===== DOCUMENT PROCESSING FUNCTIONS =====
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
| 34 |
+
"""Extract text from PDF file."""
|
| 35 |
+
text = ""
|
| 36 |
+
try:
|
| 37 |
+
# Try PyMuPDF first (better for complex PDFs)
|
| 38 |
+
doc = fitz.open(file_path)
|
| 39 |
+
for page in doc:
|
| 40 |
+
text += page.get_text() + "\n"
|
| 41 |
+
doc.close()
|
| 42 |
+
except:
|
| 43 |
+
# Fallback to PyPDF2
|
| 44 |
+
try:
|
| 45 |
+
with open(file_path, 'rb') as file:
|
| 46 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
| 47 |
+
for page in pdf_reader.pages:
|
| 48 |
+
text += page.extract_text() + "\n"
|
| 49 |
+
except:
|
| 50 |
+
# Last resort: unstructured
|
| 51 |
+
try:
|
| 52 |
+
elements = partition(filename=file_path)
|
| 53 |
+
text = "\n".join([str(element) for element in elements])
|
| 54 |
+
except:
|
| 55 |
+
text = "Error: Could not extract text from PDF"
|
| 56 |
+
|
| 57 |
+
return text.strip()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def extract_text_from_docx(file_path: str) -> str:
|
| 61 |
+
"""Extract text from DOCX file."""
|
| 62 |
+
try:
|
| 63 |
+
doc = docx.Document(file_path)
|
| 64 |
+
text = ""
|
| 65 |
+
for paragraph in doc.paragraphs:
|
| 66 |
+
text += paragraph.text + "\n"
|
| 67 |
+
return text.strip()
|
| 68 |
+
except:
|
| 69 |
+
return "Error: Could not extract text from DOCX"
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def extract_text_from_txt(file_path: str) -> str:
|
| 73 |
+
"""Extract text from TXT file."""
|
| 74 |
+
try:
|
| 75 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 76 |
+
return file.read().strip()
|
| 77 |
+
except:
|
| 78 |
+
try:
|
| 79 |
+
with open(file_path, 'r', encoding='latin1') as file:
|
| 80 |
+
return file.read().strip()
|
| 81 |
+
except:
|
| 82 |
+
return "Error: Could not read text file"
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]:
|
| 86 |
+
"""Chunk text with overlap and return metadata."""
|
| 87 |
+
chunks = []
|
| 88 |
+
start = 0
|
| 89 |
+
chunk_index = 0
|
| 90 |
+
|
| 91 |
+
while start < len(text):
|
| 92 |
+
end = start + chunk_size
|
| 93 |
+
chunk_text = text[start:end]
|
| 94 |
+
|
| 95 |
+
# Try to break at sentence boundary
|
| 96 |
+
if end < len(text):
|
| 97 |
+
last_period = chunk_text.rfind('.')
|
| 98 |
+
last_newline = chunk_text.rfind('\n')
|
| 99 |
+
break_point = max(last_period, last_newline)
|
| 100 |
+
|
| 101 |
+
if break_point > chunk_size * 0.7:
|
| 102 |
+
chunk_text = chunk_text[:break_point + 1]
|
| 103 |
+
end = start + break_point + 1
|
| 104 |
+
|
| 105 |
+
if chunk_text.strip():
|
| 106 |
+
chunks.append({
|
| 107 |
+
'text': chunk_text.strip(),
|
| 108 |
+
'start': start,
|
| 109 |
+
'end': end,
|
| 110 |
+
'index': chunk_index,
|
| 111 |
+
'length': len(chunk_text.strip())
|
| 112 |
+
})
|
| 113 |
+
chunk_index += 1
|
| 114 |
+
|
| 115 |
+
start = max(start + 1, end - overlap)
|
| 116 |
+
|
| 117 |
+
return chunks
|
| 118 |
+
|
| 119 |
+
# ===== METADATA DATABASE =====
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def init_metadata_db():
|
| 123 |
+
"""Initialize SQLite database for metadata."""
|
| 124 |
+
global metadata_db
|
| 125 |
+
|
| 126 |
+
db_path = "metadata.db"
|
| 127 |
+
metadata_db = sqlite3.connect(db_path, check_same_thread=False)
|
| 128 |
+
|
| 129 |
+
metadata_db.execute("""
|
| 130 |
+
CREATE TABLE IF NOT EXISTS documents (
|
| 131 |
+
doc_id TEXT PRIMARY KEY,
|
| 132 |
+
filename TEXT NOT NULL,
|
| 133 |
+
file_hash TEXT NOT NULL,
|
| 134 |
+
original_text TEXT NOT NULL,
|
| 135 |
+
chunk_index INTEGER NOT NULL,
|
| 136 |
+
total_chunks INTEGER NOT NULL,
|
| 137 |
+
chunk_start INTEGER NOT NULL,
|
| 138 |
+
chunk_end INTEGER NOT NULL,
|
| 139 |
+
chunk_size INTEGER NOT NULL,
|
| 140 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 141 |
+
)
|
| 142 |
+
""")
|
| 143 |
+
|
| 144 |
+
metadata_db.execute("""
|
| 145 |
+
CREATE INDEX IF NOT EXISTS idx_filename ON documents(filename);
|
| 146 |
+
""")
|
| 147 |
+
|
| 148 |
+
metadata_db.commit()
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def add_document_metadata(doc_id: str, filename: str, file_hash: str,
|
| 152 |
+
original_text: str, chunk_info: Dict[str, Any], total_chunks: int):
|
| 153 |
+
"""Add document metadata to database."""
|
| 154 |
+
global metadata_db
|
| 155 |
+
|
| 156 |
+
metadata_db.execute("""
|
| 157 |
+
INSERT OR REPLACE INTO documents
|
| 158 |
+
(doc_id, filename, file_hash, original_text, chunk_index, total_chunks,
|
| 159 |
+
chunk_start, chunk_end, chunk_size)
|
| 160 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
| 161 |
+
""", (
|
| 162 |
+
doc_id, filename, file_hash, original_text,
|
| 163 |
+
chunk_info['index'], total_chunks,
|
| 164 |
+
chunk_info['start'], chunk_info['end'], chunk_info['length']
|
| 165 |
+
))
|
| 166 |
+
metadata_db.commit()
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def get_document_metadata(doc_id: str) -> Dict[str, Any]:
|
| 170 |
+
"""Get document metadata by ID."""
|
| 171 |
+
global metadata_db
|
| 172 |
+
|
| 173 |
+
cursor = metadata_db.execute(
|
| 174 |
+
"SELECT * FROM documents WHERE doc_id = ?", (doc_id,)
|
| 175 |
+
)
|
| 176 |
+
row = cursor.fetchone()
|
| 177 |
+
|
| 178 |
+
if row:
|
| 179 |
+
columns = [desc[0] for desc in cursor.description]
|
| 180 |
+
return dict(zip(columns, row))
|
| 181 |
+
return {}
|
| 182 |
+
|
| 183 |
+
# ===== PYLATE INITIALIZATION =====
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@spaces.GPU
|
| 187 |
+
def initialize_pylate(model_name: str = "lightonai/GTE-ModernColBERT-v1") -> str:
|
| 188 |
+
"""Initialize PyLate components on GPU."""
|
| 189 |
+
global model, index, retriever
|
| 190 |
+
|
| 191 |
+
try:
|
| 192 |
+
# Initialize metadata database
|
| 193 |
+
init_metadata_db()
|
| 194 |
+
|
| 195 |
+
# Load ColBERT model
|
| 196 |
+
model = models.ColBERT(model_name_or_path=model_name)
|
| 197 |
+
|
| 198 |
+
# Move to GPU if available
|
| 199 |
+
if torch.cuda.is_available():
|
| 200 |
+
model = model.to('cuda')
|
| 201 |
+
|
| 202 |
+
# Initialize PLAID index with CPU fallback for k-means
|
| 203 |
+
index = indexes.PLAID(
|
| 204 |
+
index_folder="./pylate_index",
|
| 205 |
+
index_name="documents",
|
| 206 |
+
override=True,
|
| 207 |
+
kmeans_niters=1, # Reduce k-means iterations
|
| 208 |
+
nbits=1 # Reduce quantization bits
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Initialize retriever
|
| 212 |
+
retriever = retrieve.ColBERT(index=index)
|
| 213 |
+
|
| 214 |
+
return f"β
PyLate initialized successfully!\nModel: {model_name}\nDevice: {'GPU' if torch.cuda.is_available() else 'CPU'}"
|
| 215 |
+
|
| 216 |
+
except Exception as e:
|
| 217 |
+
return f"β Error initializing PyLate: {str(e)}"
|
| 218 |
+
|
| 219 |
+
# ===== DOCUMENT PROCESSING =====
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
@spaces.GPU
|
| 223 |
+
def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str:
|
| 224 |
+
"""Process uploaded documents and add to index."""
|
| 225 |
+
global model, index, metadata_db
|
| 226 |
+
|
| 227 |
+
if not model or not index:
|
| 228 |
+
return "β Please initialize PyLate first!"
|
| 229 |
+
|
| 230 |
+
if not files:
|
| 231 |
+
return "β No files uploaded!"
|
| 232 |
+
|
| 233 |
+
try:
|
| 234 |
+
all_documents = []
|
| 235 |
+
all_doc_ids = []
|
| 236 |
+
processed_files = []
|
| 237 |
+
|
| 238 |
+
for file in files:
|
| 239 |
+
# Get file info
|
| 240 |
+
filename = Path(file.name).name
|
| 241 |
+
file_path = file.name
|
| 242 |
+
|
| 243 |
+
# Calculate file hash
|
| 244 |
+
with open(file_path, 'rb') as f:
|
| 245 |
+
file_hash = hashlib.md5(f.read()).hexdigest()
|
| 246 |
+
|
| 247 |
+
# Extract text based on file type
|
| 248 |
+
if filename.lower().endswith('.pdf'):
|
| 249 |
+
text = extract_text_from_pdf(file_path)
|
| 250 |
+
elif filename.lower().endswith('.docx'):
|
| 251 |
+
text = extract_text_from_docx(file_path)
|
| 252 |
+
elif filename.lower().endswith('.txt'):
|
| 253 |
+
text = extract_text_from_txt(file_path)
|
| 254 |
+
else:
|
| 255 |
+
continue
|
| 256 |
+
|
| 257 |
+
if not text or text.startswith("Error:"):
|
| 258 |
+
continue
|
| 259 |
+
|
| 260 |
+
# Chunk the text
|
| 261 |
+
chunks = chunk_text(text, chunk_size, overlap)
|
| 262 |
+
|
| 263 |
+
# Process each chunk
|
| 264 |
+
for chunk in chunks:
|
| 265 |
+
doc_id = f"{filename}_chunk_{chunk['index']}"
|
| 266 |
+
all_documents.append(chunk['text'])
|
| 267 |
+
all_doc_ids.append(doc_id)
|
| 268 |
+
|
| 269 |
+
# Store metadata
|
| 270 |
+
add_document_metadata(
|
| 271 |
+
doc_id=doc_id,
|
| 272 |
+
filename=filename,
|
| 273 |
+
file_hash=file_hash,
|
| 274 |
+
original_text=chunk['text'],
|
| 275 |
+
chunk_info=chunk,
|
| 276 |
+
total_chunks=len(chunks)
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
processed_files.append(f"{filename}: {len(chunks)} chunks")
|
| 280 |
+
|
| 281 |
+
if not all_documents:
|
| 282 |
+
return "β No text could be extracted from uploaded files!"
|
| 283 |
+
|
| 284 |
+
# Encode documents with PyLate
|
| 285 |
+
document_embeddings = model.encode(
|
| 286 |
+
all_documents,
|
| 287 |
+
batch_size=16, # Smaller batch for ZeroGPU
|
| 288 |
+
is_query=False,
|
| 289 |
+
show_progress_bar=True
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# Add to PLAID index
|
| 293 |
+
index.add_documents(
|
| 294 |
+
documents_ids=all_doc_ids,
|
| 295 |
+
documents_embeddings=document_embeddings
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
result = f"β
Successfully processed {len(files)} files:\n"
|
| 299 |
+
result += f"π Total chunks: {len(all_documents)}\n"
|
| 300 |
+
result += f"π Indexed documents:\n"
|
| 301 |
+
for file_info in processed_files:
|
| 302 |
+
result += f" β’ {file_info}\n"
|
| 303 |
+
|
| 304 |
+
return result
|
| 305 |
+
|
| 306 |
+
except Exception as e:
|
| 307 |
+
return f"β Error processing documents: {str(e)}"
|
| 308 |
+
|
| 309 |
+
# ===== SEARCH FUNCTION =====
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
@spaces.GPU
|
| 313 |
+
def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str:
|
| 314 |
+
"""Search documents using PyLate."""
|
| 315 |
+
global model, retriever, metadata_db
|
| 316 |
+
|
| 317 |
+
if not model or not retriever:
|
| 318 |
+
return "β Please initialize PyLate and process documents first!"
|
| 319 |
+
|
| 320 |
+
if not query.strip():
|
| 321 |
+
return "β Please enter a search query!"
|
| 322 |
+
|
| 323 |
+
try:
|
| 324 |
+
# Encode query
|
| 325 |
+
query_embedding = model.encode([query], is_query=True)
|
| 326 |
+
|
| 327 |
+
# Search
|
| 328 |
+
results = retriever.retrieve(query_embedding, k=k)[0]
|
| 329 |
+
|
| 330 |
+
if not results:
|
| 331 |
+
return "π No results found for your query."
|
| 332 |
+
|
| 333 |
+
# Format results with metadata
|
| 334 |
+
formatted_results = [f"π **Search Results for:** '{query}'\n"]
|
| 335 |
+
|
| 336 |
+
for i, result in enumerate(results):
|
| 337 |
+
doc_id = result['id']
|
| 338 |
+
score = result['score']
|
| 339 |
+
|
| 340 |
+
# Get metadata
|
| 341 |
+
metadata = get_document_metadata(doc_id)
|
| 342 |
+
|
| 343 |
+
formatted_results.append(f"## Result {i+1} (Score: {score:.2f})")
|
| 344 |
+
formatted_results.append(
|
| 345 |
+
f"**File:** {metadata.get('filename', 'Unknown')}")
|
| 346 |
+
formatted_results.append(
|
| 347 |
+
f"**Chunk:** {metadata.get('chunk_index', 0) + 1}/{metadata.get('total_chunks', 1)}")
|
| 348 |
+
|
| 349 |
+
if show_chunks:
|
| 350 |
+
text = metadata.get('original_text', '')
|
| 351 |
+
preview = text[:300] + "..." if len(text) > 300 else text
|
| 352 |
+
formatted_results.append(f"**Text:** {preview}")
|
| 353 |
+
|
| 354 |
+
formatted_results.append("---")
|
| 355 |
+
|
| 356 |
+
return "\n".join(formatted_results)
|
| 357 |
+
|
| 358 |
+
except Exception as e:
|
| 359 |
+
return f"β Error searching: {str(e)}"
|
| 360 |
+
|
| 361 |
+
# ===== GRADIO INTERFACE =====
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
def create_interface():
|
| 365 |
+
"""Create the Gradio interface."""
|
| 366 |
+
|
| 367 |
+
with gr.Blocks(title="PyLate Document Search", theme=gr.themes.Soft()) as demo:
|
| 368 |
+
gr.Markdown("""
|
| 369 |
+
# π PyLate Document Search
|
| 370 |
+
### Powered by ColBERT and ZeroGPU H100
|
| 371 |
+
|
| 372 |
+
Upload documents, process them with PyLate, and perform semantic search!
|
| 373 |
+
""")
|
| 374 |
+
|
| 375 |
+
with gr.Tab("π Setup"):
|
| 376 |
+
gr.Markdown("### Initialize PyLate System")
|
| 377 |
+
|
| 378 |
+
model_choice = gr.Dropdown(
|
| 379 |
+
choices=[
|
| 380 |
+
# "lightonai/GTE-ModernColBERT-v1",
|
| 381 |
+
"colbert-ir/colbertv2.0",
|
| 382 |
+
"sentence-transformers/all-MiniLM-L6-v2"
|
| 383 |
+
],
|
| 384 |
+
value="lightonai/GTE-ModernColBERT-v1",
|
| 385 |
+
label="Select Model"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
init_btn = gr.Button("Initialize PyLate", variant="primary")
|
| 389 |
+
init_status = gr.Textbox(label="Initialization Status", lines=3)
|
| 390 |
+
|
| 391 |
+
init_btn.click(
|
| 392 |
+
initialize_pylate,
|
| 393 |
+
inputs=model_choice,
|
| 394 |
+
outputs=init_status
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
with gr.Tab("π Document Upload"):
|
| 398 |
+
gr.Markdown("### Upload and Process Documents")
|
| 399 |
+
|
| 400 |
+
with gr.Row():
|
| 401 |
+
with gr.Column():
|
| 402 |
+
file_upload = gr.File(
|
| 403 |
+
file_count="multiple",
|
| 404 |
+
file_types=[".pdf", ".docx", ".txt"],
|
| 405 |
+
label="Upload Documents (PDF, DOCX, TXT)"
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
with gr.Row():
|
| 409 |
+
chunk_size = gr.Slider(
|
| 410 |
+
minimum=500,
|
| 411 |
+
maximum=3000,
|
| 412 |
+
value=1000,
|
| 413 |
+
step=100,
|
| 414 |
+
label="Chunk Size (characters)"
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
overlap = gr.Slider(
|
| 418 |
+
minimum=0,
|
| 419 |
+
maximum=500,
|
| 420 |
+
value=100,
|
| 421 |
+
step=50,
|
| 422 |
+
label="Chunk Overlap (characters)"
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
process_btn = gr.Button(
|
| 426 |
+
"Process Documents", variant="primary")
|
| 427 |
+
|
| 428 |
+
with gr.Column():
|
| 429 |
+
process_status = gr.Textbox(
|
| 430 |
+
label="Processing Status",
|
| 431 |
+
lines=10,
|
| 432 |
+
max_lines=15
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
process_btn.click(
|
| 436 |
+
process_documents,
|
| 437 |
+
inputs=[file_upload, chunk_size, overlap],
|
| 438 |
+
outputs=process_status
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
with gr.Tab("π Search"):
|
| 442 |
+
gr.Markdown("### Search Your Documents")
|
| 443 |
+
|
| 444 |
+
with gr.Row():
|
| 445 |
+
with gr.Column():
|
| 446 |
+
search_query = gr.Textbox(
|
| 447 |
+
label="Search Query",
|
| 448 |
+
placeholder="Enter your search query...",
|
| 449 |
+
lines=2
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
with gr.Row():
|
| 453 |
+
num_results = gr.Slider(
|
| 454 |
+
minimum=1,
|
| 455 |
+
maximum=20,
|
| 456 |
+
value=5,
|
| 457 |
+
step=1,
|
| 458 |
+
label="Number of Results"
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
show_chunks = gr.Checkbox(
|
| 462 |
+
value=True,
|
| 463 |
+
label="Show Text Chunks"
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
search_btn = gr.Button("Search", variant="primary")
|
| 467 |
+
|
| 468 |
+
with gr.Column():
|
| 469 |
+
search_results = gr.Textbox(
|
| 470 |
+
label="Search Results",
|
| 471 |
+
lines=15,
|
| 472 |
+
max_lines=20
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
search_btn.click(
|
| 476 |
+
search_documents,
|
| 477 |
+
inputs=[search_query, num_results, show_chunks],
|
| 478 |
+
outputs=search_results
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
with gr.Tab("βΉοΈ Info"):
|
| 482 |
+
gr.Markdown("""
|
| 483 |
+
### About This System
|
| 484 |
+
|
| 485 |
+
**PyLate Document Search** is a semantic search system that uses:
|
| 486 |
+
|
| 487 |
+
- **PyLate**: A flexible library for ColBERT models
|
| 488 |
+
- **ColBERT**: Late interaction retrieval for high-quality search
|
| 489 |
+
- **ZeroGPU**: Hugging Face's free H100 GPU infrastructure
|
| 490 |
+
|
| 491 |
+
#### Features:
|
| 492 |
+
- π Multi-format document support (PDF, DOCX, TXT)
|
| 493 |
+
- βοΈ Intelligent text chunking with overlap
|
| 494 |
+
- π§ Semantic search using ColBERT embeddings
|
| 495 |
+
- πΎ Metadata tracking for result context
|
| 496 |
+
- β‘ GPU-accelerated processing
|
| 497 |
+
|
| 498 |
+
#### Usage Tips:
|
| 499 |
+
1. Initialize the system first (required)
|
| 500 |
+
2. Upload your documents and process them
|
| 501 |
+
3. Use natural language queries for best results
|
| 502 |
+
4. Adjust chunk size based on your document types
|
| 503 |
+
|
| 504 |
+
#### Model Information:
|
| 505 |
+
- **GTE-ModernColBERT**: Latest high-performance model
|
| 506 |
+
- **ColBERTv2**: Original Stanford implementation
|
| 507 |
+
- **MiniLM**: Faster, smaller model for quick testing
|
| 508 |
+
|
| 509 |
+
Built with β€οΈ using PyLate and Gradio
|
| 510 |
+
""")
|
| 511 |
+
|
| 512 |
+
return demo
|
| 513 |
+
|
| 514 |
+
# ===== MAIN =====
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
if __name__ == "__main__":
|
| 518 |
+
demo = create_interface()
|
| 519 |
+
demo.launch(
|
| 520 |
+
share=False,
|
| 521 |
+
server_name="0.0.0.0",
|
| 522 |
+
server_port=7860
|
| 523 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==1.3.0
|
| 2 |
+
gradio==4.44.0
|
| 3 |
+
gradio_client==1.3.0
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
pandas==2.2.3
|
| 6 |
+
pylate==1.2.0
|
| 7 |
+
PyPDF2==3.0.1
|
| 8 |
+
python-docx==1.2.0
|
| 9 |
+
sentence-transformers==4.0.2
|
| 10 |
+
spaces==0.37.1
|
| 11 |
+
sqlite-utils==3.38
|
| 12 |
+
torch==2.4.0+cu121
|
| 13 |
+
torch-stoi==0.2.3
|
| 14 |
+
torchaudio==2.4.0+cu121
|
| 15 |
+
torchvision==0.19.0+cu121
|
| 16 |
+
transformers
|
| 17 |
+
unstructured==0.17.2
|
| 18 |
+
unstructured-client==0.27.0
|