|
import asyncio |
|
import time |
|
|
|
from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt |
|
from lagent.distributed import AsyncHTTPAgentClient, AsyncHTTPAgentServer, HTTPAgentClient, HTTPAgentServer |
|
from lagent.llms import INTERNLM2_META |
|
from lagent.schema import AgentMessage |
|
from lagent.utils import create_object |
|
|
|
loop = asyncio.new_event_loop() |
|
asyncio.set_event_loop(loop) |
|
|
|
server = HTTPAgentServer( |
|
'1', |
|
{ |
|
'type': 'lagent.agents.AsyncAgent', |
|
'llm': { |
|
'type': 'lagent.llms.AsyncLMDeployPipeline', |
|
'path': 'internlm/internlm2_5-7b-chat', |
|
'meta_template': INTERNLM2_META, |
|
} |
|
}, |
|
port=8090, |
|
) |
|
print(server.is_alive) |
|
message = AgentMessage(sender='user', content='hello') |
|
result = server(message) |
|
print(result) |
|
server.shutdown() |
|
|
|
|
|
server = AsyncHTTPAgentServer( |
|
'1', |
|
{ |
|
'type': 'lagent.agents.AsyncMathCoder', |
|
'llm': { |
|
'type': 'lagent.llms.AsyncLMDeployPipeline', |
|
'path': 'internlm/internlm2_5-7b-chat', |
|
'meta_template': INTERNLM2_META, |
|
'tp': 1, |
|
'top_k': 1, |
|
'temperature': 1.0, |
|
'stop_words': ['<|im_end|>', '<|action_end|>'], |
|
'max_new_tokens': 1024, |
|
}, |
|
'interpreter': { |
|
'type': 'lagent.actions.AsyncIPythonInterpreter', |
|
'max_kernels': 100 |
|
}, |
|
}, |
|
port=8091, |
|
) |
|
message = AgentMessage( |
|
sender='user', |
|
content= |
|
('Marie is thinking of a multiple of 63, while Jay is thinking of a factor ' |
|
'of 63. They happen to be thinking of the same number. There are two ' |
|
'possibilities for the number that each of them is thinking of, one ' |
|
'positive and one negative. Find the product of these two numbers.')) |
|
result = server(message) |
|
print(loop.run_until_complete(result)) |
|
print(server.state_dict()) |
|
|
|
client = AsyncHTTPAgentClient(port=8091) |
|
result = client('hello', session_id=1) |
|
print(loop.run_until_complete(result)) |
|
print(client.state_dict(1)) |
|
|
|
client = HTTPAgentClient(port=8091) |
|
print(client.state_dict(1)) |
|
print(client('introduce yourself', session_id=1)) |
|
print(client.state_dict(1)) |
|
server.shutdown() |
|
|
|
|
|
plugins = [dict(type='lagent.actions.AsyncArxivSearch')] |
|
server_cfg = dict( |
|
type='lagent.distributed.AsyncHTTPAgentServer', |
|
gpu_id='1', |
|
config={ |
|
'type': 'lagent.agents.AsyncAgentForInternLM', |
|
'llm': { |
|
'type': 'lagent.llms.AsyncLMDeployPipeline', |
|
'path': 'internlm/internlm2_5-7b-chat', |
|
'meta_template': INTERNLM2_META, |
|
'tp': 1, |
|
'top_k': 1, |
|
'temperature': 1.0, |
|
'stop_words': ['<|im_end|>', '<|action_end|>'], |
|
'max_new_tokens': 1024, |
|
}, |
|
'plugins': plugins, |
|
'output_format': { |
|
'type': 'lagent.prompts.parsers.PluginParser', |
|
'template': PLUGIN_CN, |
|
'prompt': get_plugin_prompt(plugins), |
|
} |
|
}, |
|
port=8091, |
|
) |
|
server = create_object(server_cfg) |
|
tic = time.time() |
|
coros = [ |
|
server(query, session_id=i) |
|
for i, query in enumerate(['LLM智能体方向的最新论文有哪些?'] * 50) |
|
] |
|
res = loop.run_until_complete(asyncio.gather(*coros)) |
|
print('-' * 120) |
|
print(f'time elapsed: {time.time() - tic}') |
|
server.shutdown() |
|
|