|
import gradio as gr |
|
from auto_gptq import AutoGPTQForCausalLM |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from utils import build_faiss_index, retrieve |
|
|
|
|
|
with open("documents/1mg_rag.txt") as f: |
|
docs = [line.strip() for line in f if line.strip()] |
|
|
|
|
|
index, _ = build_faiss_index(docs) |
|
|
|
|
|
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoGPTQForCausalLM.from_quantized(model_id, device_map="auto", trust_remote_code=True) |
|
|
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def answer_question(query): |
|
context = "\n".join(retrieve(query, index, docs)) |
|
prompt = f"[INST] Use the following context to answer the question.\n\nContext:\n{context}\n\nQuestion: {query} [/INST]" |
|
result = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.7) |
|
return result[0]['generated_text'] |
|
|
|
gr.Interface(fn=answer_question, inputs="text", outputs="text", title="Mistral RAG").launch() |
|
|