Fouzi Takelait commited on
Commit
5476c3d
1 Parent(s): a35448d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -19,21 +19,21 @@ from transformer_mt_roberta.modeling_transformer_final import TransfomerEncoderD
19
  # results = translation_pipeline(text_input)
20
  # return results[0]['translation_text']
21
 
22
- # def translator_fn_baseline(text_in):
23
- # source_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/da_tokenizer")
24
- # target_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/en_tokenizer")
25
- # model = TransfomerEncoderDecoderModel.from_pretrained("da_en_output_dir")
26
-
27
- # input_ids = source_tokenizer.encode(text_in, return_tensors="pt")
28
- # output_ids = model.generate(
29
- # input_ids,
30
- # max_length=10,
31
- # bos_token_id=target_tokenizer.bos_token_id,
32
- # eos_token_id=target_tokenizer.eos_token_id,
33
- # pad_token_id=target_tokenizer.pad_token_id,
34
- # )
35
-
36
- # return target_tokenizer.decode(output_ids[0])
37
 
38
  def translator_fn_roberta(text_in):
39
  source_tokenizer_pretrained_roberta = AutoTokenizer.from_pretrained("flax-community/roberta-base-danish")
@@ -50,9 +50,9 @@ def translator_fn_roberta(text_in):
50
  )
51
  return target_tokenizer_pretrained_roberta.decode(output_ids_pretrained_roberta[0])
52
 
53
- iface = gr.Interface(fn=translator_fn_roberta,
54
  inputs=gr.inputs.Textbox(lines=2, placeholder=None, label="Your Danish text goes here."),
55
- outputs=['text'], # a list should match the number of values returned by fn to have one input and 2 putputs.
56
  description = "This App translates text from Danish to the English language.",
57
  title = "Danish to English Translator App",
58
  theme = "peach")
 
19
  # results = translation_pipeline(text_input)
20
  # return results[0]['translation_text']
21
 
22
+ def translator_fn_baseline(text_in):
23
+ source_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/da_tokenizer")
24
+ target_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/en_tokenizer")
25
+ model = TransfomerEncoderDecoderModel.from_pretrained("da_en_output_dir")
26
+
27
+ input_ids = source_tokenizer.encode(text_in, return_tensors="pt")
28
+ output_ids = model.generate(
29
+ input_ids,
30
+ max_length=10,
31
+ bos_token_id=target_tokenizer.bos_token_id,
32
+ eos_token_id=target_tokenizer.eos_token_id,
33
+ pad_token_id=target_tokenizer.pad_token_id,
34
+ )
35
+
36
+ return target_tokenizer.decode(output_ids[0])
37
 
38
  def translator_fn_roberta(text_in):
39
  source_tokenizer_pretrained_roberta = AutoTokenizer.from_pretrained("flax-community/roberta-base-danish")
 
50
  )
51
  return target_tokenizer_pretrained_roberta.decode(output_ids_pretrained_roberta[0])
52
 
53
+ iface = gr.Interface(fn=[translator_fn_baseline, translator_fn_roberta],
54
  inputs=gr.inputs.Textbox(lines=2, placeholder=None, label="Your Danish text goes here."),
55
+ outputs=['text', 'text'], # a list should match the number of values returned by fn to have one input and 2 putputs.
56
  description = "This App translates text from Danish to the English language.",
57
  title = "Danish to English Translator App",
58
  theme = "peach")