Spaces:
Sleeping
Sleeping
import warnings | |
from cryptography.utils import CryptographyDeprecationWarning | |
with warnings.catch_warnings(): | |
warnings.filterwarnings('ignore', category=CryptographyDeprecationWarning) | |
import paramiko | |
import gradio as gr | |
#from transformers import pipeline | |
from transformers import PreTrainedTokenizerFast, AutoTokenizer | |
from transformers import PreTrainedTokenizerFast | |
from transformer_mt.modeling_transformer import TransfomerEncoderDecoderModel | |
from transformer_mt_roberta.modeling_transformer_final import TransfomerEncoderDecoderModel as mt_roberta | |
#translation_pipeline = pipeline('translation_en_to_fr') | |
# seting up translation transformer into Gradio | |
#def translator_fn(text_input): | |
# results = translation_pipeline(text_input) | |
# return results[0]['translation_text'] | |
def translator_fn_baseline(text_in): | |
source_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/da_tokenizer") | |
target_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/en_tokenizer") | |
model = TransfomerEncoderDecoderModel.from_pretrained("da_en_output_dir") | |
input_ids = source_tokenizer.encode(text_in, return_tensors="pt") | |
output_ids = model.generate( | |
input_ids, | |
max_length=len(text_in.split())+3, | |
bos_token_id=target_tokenizer.bos_token_id, | |
eos_token_id=target_tokenizer.eos_token_id, | |
pad_token_id=target_tokenizer.pad_token_id, | |
) | |
return target_tokenizer.decode(output_ids[0]) | |
def translator_fn_roberta(text_in): | |
source_tokenizer_pretrained_roberta = AutoTokenizer.from_pretrained("flax-community/roberta-base-danish") | |
target_tokenizer_pretrained_roberta = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/en_tokenizer") | |
model_pretrained_roberta = mt_roberta.from_pretrained("da_en_RoBERTa_pretrained") | |
input_ids_pretrained_roberta = source_tokenizer_pretrained_roberta.encode(text_in, return_tensors="pt") | |
output_ids_pretrained_roberta = model_pretrained_roberta.generate( | |
input_ids_pretrained_roberta, | |
max_length=len(text_in.split())+3, | |
bos_token_id=target_tokenizer_pretrained_roberta.bos_token_id, | |
eos_token_id=target_tokenizer_pretrained_roberta.eos_token_id, | |
pad_token_id=target_tokenizer_pretrained_roberta.pad_token_id, | |
) | |
return target_tokenizer_pretrained_roberta.decode(output_ids_pretrained_roberta[0]) | |
iface = gr.Interface(fn=[translator_fn_baseline, translator_fn_roberta], | |
inputs=gr.inputs.Textbox(lines=2, placeholder=None, label="Your Danish text goes here."), | |
outputs=['text'], # a list should match the number of values returned by fn to have one input and 2 putputs. | |
description = "This App translates text from Danish to the English language.", | |
title = "Danish to English Translator App", | |
theme = "peach") | |
iface.launch(share=False, enable_queue=True) | |