Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,17 +15,12 @@ print(table_data.head())
|
|
15 |
def response(user_question, table_data):
|
16 |
a = datetime.datetime.now()
|
17 |
|
18 |
-
#model_name = "microsoft/tapex-large-finetuned-wtq"
|
19 |
model_name = "google/tapas-base-finetuned-wtq"
|
20 |
-
#model = BartForConditionalGeneration.from_pretrained(model_name)
|
21 |
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
|
22 |
-
#tokenizer = TapexTokenizer.from_pretrained(model_name)
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
-
|
25 |
-
#queries = [user_question]
|
26 |
|
27 |
-
#
|
28 |
-
encoding = tokenizer(table=table_data,
|
29 |
|
30 |
# Experiment with generation parameters
|
31 |
outputs = model.generate(
|
|
|
15 |
def response(user_question, table_data):
|
16 |
a = datetime.datetime.now()
|
17 |
|
|
|
18 |
model_name = "google/tapas-base-finetuned-wtq"
|
|
|
19 |
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
21 |
|
22 |
+
# The query should be passed as a list
|
23 |
+
encoding = tokenizer(table=table_data, queries=[user_question], padding=True, return_tensors="pt", truncation=True)
|
24 |
|
25 |
# Experiment with generation parameters
|
26 |
outputs = model.generate(
|