Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
|
6 |
df.fillna(0, inplace=True)
|
@@ -8,9 +10,17 @@ table_data = df.astype(str)
|
|
8 |
print(table_data.head())
|
9 |
|
10 |
def response(user_question, table_data):
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Streamlit interface
|
16 |
st.markdown("""
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import torch
|
4 |
from transformers import pipeline
|
5 |
+
from transformers import TapasTokenizer, TapasForQuestionAnswering
|
6 |
|
7 |
df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
|
8 |
df.fillna(0, inplace=True)
|
|
|
10 |
print(table_data.head())
|
11 |
|
12 |
def response(user_question, table_data):
|
13 |
+
tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-finetuned-wtq", drop_rows_to_fit=True)
|
14 |
+
model = TapasForQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
15 |
+
|
16 |
+
inputs = tokenizer(table=table_data, queries=user_question, padding="max_length", truncation=True, return_tensors="pt")
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
predicted_answer_coordinates = outputs.predicted_answer_coordinates.detach().cpu().numpy()
|
20 |
+
id2aggregation = {0: 'NONE', 1: 'SUM', 2: 'AVERAGE', 3: 'COUNT'}
|
21 |
+
aggregation_predictions = id2aggregation[outputs.aggregation_predictions.detach().cpu().numpy()[0]]
|
22 |
+
|
23 |
+
return predicted_answer_coordinates, aggregation_predictions
|
24 |
|
25 |
# Streamlit interface
|
26 |
st.markdown("""
|