fschwartzer commited on
Commit
69d0d2d
·
1 Parent(s): 19af976

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -255,13 +255,10 @@ def bootstrap_stats(predicted_target, num_samples=1000):
255
  bootstrapped_means.append(np.mean(bootstrap_sample))
256
 
257
  # Calculate lower and higher bounds
258
- lower_bound = np.percentile(bootstrapped_means, 5.)
259
- higher_bound = np.percentile(bootstrapped_means, 95.)
260
 
261
- # Calculate the mean value
262
- mean_value = np.mean(bootstrapped_means)
263
-
264
- return lower_bound, higher_bound, mean_value
265
 
266
  # Apply KNN and get predicted Predicted_target values
267
  predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature'])
@@ -269,10 +266,12 @@ predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', '
269
  # Check if there are predictions to display
270
  if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0):
271
  # Add predicted Predicted_target values to filtered_data
272
- filtered_data['Predicted_target'] = predicted_target
273
 
274
  # Apply bootstrap on the predicted values
275
- lower_bound, higher_bound, mean_value = bootstrap_stats(predicted_target)
 
 
276
 
277
  # Display the results with custom styling
278
  st.markdown("## **Resultado da Análise Estatística**")
 
255
  bootstrapped_means.append(np.mean(bootstrap_sample))
256
 
257
  # Calculate lower and higher bounds
258
+ lower_bound = np.percentile(bootstrapped_means, 25.)
259
+ higher_bound = np.percentile(bootstrapped_means, 75.)
260
 
261
+ return lower_bound, higher_bound
 
 
 
262
 
263
  # Apply KNN and get predicted Predicted_target values
264
  predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature'])
 
266
  # Check if there are predictions to display
267
  if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0):
268
  # Add predicted Predicted_target values to filtered_data
269
+ filtered_data['target_column'] = bound_data
270
 
271
  # Apply bootstrap on the predicted values
272
+ lower_bound, higher_bound = bootstrap_stats(bound_data)
273
+
274
+ mean_value = np.mean(filtered_data['Predicted_target'])
275
 
276
  # Display the results with custom styling
277
  st.markdown("## **Resultado da Análise Estatística**")