GEO_DASH_TABS / app.py
fschwartzer's picture
Update app.py
9fb5d19
raw
history blame
5.5 kB
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
from geopy.distance import geodesic
import googlemaps
from geopy.exc import GeocoderTimedOut
# Function to calculate distance in meters between two coordinates
def calculate_distance(lat1, lon1, lat2, lon2):
coords_1 = (lat1, lon1)
coords_2 = (lat2, lon2)
return geodesic(coords_1, coords_2).meters
# Function to apply KNN and return Vunit values
def knn_predict(df, target_column, features_columns, k=5):
# Separate features and target variable
X = df[features_columns]
y = df[target_column]
# Create KNN regressor
knn = KNeighborsRegressor(n_neighbors=k)
# Fit the model
knn.fit(X, y)
# Use the model to predict Vunit for the filtered_data
predictions = knn.predict(df[features_columns])
return predictions
# Set wide mode
st.set_page_config(layout="wide")
# Set dark theme
st.markdown(
"""
<style>
body {
color: white;
background-color: #1e1e1e;
}
.st-df-header, .st-df-body, .st-df-caption {
color: #f8f9fa; /* Bootstrap table header text color */
}
.st-eb {
background-color: #343a40; /* Streamlit exception box background color */
}
</style>
""",
unsafe_allow_html=True
)
# Create a DataFrame with sample data
data = pd.read_excel('ven_ter_fim_PEDÓ.xlsx')
# Initialize variables to avoid NameError
selected_coords = 'Custom'
radius_visible = True
custom_lat = data['latitude'].mean()
custom_lon = data['longitude'].mean()
radius_in_meters = 1000
filtered_data = data # Initialize with the entire dataset
# Find the maximum distance between coordinates
max_distance = 0
for index, row in data.iterrows():
distance = calculate_distance(row['latitude'], row['longitude'], data['latitude'].mean(), data['longitude'].mean())
if distance > max_distance:
max_distance = distance
# Calculate a zoom level based on the maximum distance
zoom_level = round(15 - np.log10(max_distance))
# Create a sidebar for controls
with st.sidebar:
st.title('avalia.se')
selected_coords = st.selectbox('Selecione Coordenadas', ['Random', 'Custom'])
if selected_coords == 'Custom':
custom_address = st.text_input('Enter Address', 'Your Address Here')
radius_visible = True # Show radius slider for custom coordinates
# No need to initialize max_distance_all here
else:
custom_address = "Porto Alegre, Brazil" # Default address
radius_visible = False # Hide radius slider for random coordinates
max_distance_all = 0 # Initialize max_distance_all here
max_distance_all = 0 # Initialize max_distance_all here
# Geocode the custom address using the Google Maps API
gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') # Replace with your API key
try:
location = gmaps.geocode(custom_address)[0]['geometry']['location']
custom_lat, custom_lon = location['lat'], location['lng']
except (IndexError, GeocoderTimedOut):
st.error("Error: Unable to geocode the provided address. Please check and try again.")
# Slider for setting the zoom level
if selected_coords == 'Custom':
zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level)
else:
for index, row in data.iterrows():
distance_all = calculate_distance(row['latitude'], row['longitude'], data['latitude'].mean(), data['longitude'].mean())
if distance_all > max_distance_all:
max_distance_all = distance_all
# Calculate a zoom level based on the maximum distance of the entire dataset
zoom_level_all = round(15 - np.log10(max_distance_all))
# Slider for setting the zoom level based on the entire dataset
zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level_all)
# Conditionally render the radius slider
if radius_visible:
radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000)
# Filter data based on the radius
if selected_coords == 'Custom':
filtered_data = data[data.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters]
filtered_data = filtered_data.dropna() # Drop rows with NaN values
# Add a custom CSS class to the map container
st.markdown(f"""<style>
.map {{
width: 100%;
height: 100vh;
}}
</style>""", unsafe_allow_html=True)
# Check if KNN should be applied
if selected_coords == 'Custom' and radius_visible:
# Apply KNN and get predicted Vunit values
predicted_vunit = knn_predict(filtered_data, 'Vunit', ['latitude', 'longitude', 'Area']) # Update with your features
# Add predicted Vunit values to filtered_data
filtered_data['Predicted_Vunit'] = predicted_vunit
# Display the map and filtered_data
with st.container():
if selected_coords == 'Custom':
st.map(filtered_data, zoom=zoom_level, use_container_width=True)
elif selected_coords == 'Random':
st.map(data, zoom=zoom_level, use_container_width=True)
# Display the predicted Vunit values if applicable
if 'Predicted_Vunit' in filtered_data.columns:
st.write("Valores (R$/m²) previstos com algoritmo KNN:")
st.write(filtered_data[['latitude', 'longitude', 'Vunit', 'Predicted_Vunit']])