Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn.neighbors import KNeighborsRegressor | |
from geopy.distance import geodesic | |
import googlemaps | |
from geopy.exc import GeocoderTimedOut | |
from streamlit_folium import st_folium | |
import folium | |
from branca.colormap import LinearColormap | |
import base64 | |
from io import BytesIO | |
# Function to add heatmap layer to folium map | |
def add_heatmap_layer(map_obj, data, column_name, colormap_name, radius=15): | |
heat_data = data[['latitude', 'longitude', column_name]].dropna() | |
heat_layer = folium.FeatureGroup(name=f'Variável - {column_name}') | |
cmap = LinearColormap(colors=['blue', 'white', 'red'], vmin=heat_data[column_name].min(), vmax=heat_data[column_name].max()) | |
for index, row in heat_data.iterrows(): | |
folium.CircleMarker( | |
location=[row['latitude'], row['longitude']], | |
radius=radius, | |
fill=True, | |
fill_color=cmap(row[column_name]), | |
fill_opacity=0.7, | |
color='black', | |
weight=0.5, | |
popup=f"{column_name}: {row[column_name]:.2f}" # Fix here | |
).add_to(heat_layer) | |
heat_layer.add_to(map_obj) | |
# Function to calculate distance in meters between two coordinates | |
def calculate_distance(lat1, lon1, lat2, lon2): | |
coords_1 = (lat1, lon1) | |
coords_2 = (lat2, lon2) | |
return geodesic(coords_1, coords_2).meters | |
def knn_predict(df, target_column, features_columns, k=5): | |
# Separate features and target variable | |
X = df[features_columns] | |
y = df[target_column] | |
# Check if there is enough data for prediction | |
if len(X) < k: | |
return np.zeros(len(X)) # Return an array of zeros if there isn't enough data | |
# Create KNN regressor | |
knn = KNeighborsRegressor(n_neighbors=k) | |
# Fit the model | |
knn.fit(X, y) | |
# Use the model to predict target_column for the filtered_data | |
predictions = knn.predict(df[features_columns]) | |
return predictions | |
# Set wide mode | |
st.set_page_config(layout="wide") | |
# Set dark theme | |
st.markdown( | |
""" | |
<style> | |
@font-face {font-family: 'Quicksand'; | |
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); | |
} | |
body { | |
color: white; | |
background-color: #1e1e1e; | |
font-family: 'Quicksand', sans-serif; | |
} | |
.st-df-header, .st-df-body, .st-df-caption { | |
color: #f8f9fa; /* Bootstrap table header text color */ | |
} | |
.st-eb { | |
background-color: #343a40; /* Streamlit exception box background color */ | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Create a DataFrame with sample data | |
data = pd.read_excel('data_nexus.xlsx') | |
# Initialize variables to avoid NameError | |
radius_visible = True | |
custom_address_initial = 'Centro, Vera Cruz - RS, Brazil' # Initial custom address | |
#custom_lat = data['latitude'].median() | |
custom_lat = -29.72 | |
#custom_lon = data['longitude'].median() | |
custom_lon = -52.50 | |
radius_in_meters = 150000 | |
filtered_data = data # Initialize with the entire dataset | |
# Calculate a zoom level based on the maximum distance | |
zoom_level = 13 | |
# Set font to 'Quicksand' for title_html | |
title_html = """ | |
<style> | |
@font-face {font-family: 'Quicksand'; | |
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); | |
} | |
body {{ | |
font-family: 'Quicksand', sans-serif; | |
}} | |
</style> | |
<span style='color: gray; font-size: 50px;'>aval</span> | |
<span style='color: white; font-size: 50px;'>ia</span> | |
<span style='color: gray; font-size: 50px;'>.NEXUS</span> | |
""" | |
# Set font to 'Quicksand' for factor_html | |
factor_html = """ | |
<style> | |
@font-face {font-family: 'Quicksand'; | |
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); | |
} | |
body {{ | |
font-family: 'Quicksand', sans-serif; | |
}} | |
</style> | |
<a href='https://huggingface.co/spaces/DavidSB/avaliaFACTOR' target='_blank' style='text-decoration: none; color: inherit;'> | |
<span style='color: gray; font-size: 20px;'>aval</span> | |
<span style='color: white; font-size: 20px;'>ia</span> | |
<span style='color: gray; font-size: 20px;'>.FACTOR</span> | |
""" | |
# Set font to 'Quicksand' for evo_html | |
evo_html = """ | |
<style> | |
@font-face {font-family: 'Quicksand'; | |
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype'); | |
} | |
body {{ | |
font-family: 'Quicksand', sans-serif; | |
}} | |
</style> | |
<a href='https://huggingface.co/spaces/DavidSB/avalia.EVO' target='_blank' style='text-decoration: none; color: inherit;'> | |
<span style='color: gray; font-size: 20px;'>aval</span> | |
<span style='color: white; font-size: 20px;'>ia</span> | |
<span style='color: gray; font-size: 20px;'>.EVO</span> | |
""" | |
# Create a sidebar for controls | |
with st.sidebar: | |
st.markdown(title_html, unsafe_allow_html=True) | |
# Add a dropdown for filtering "Fonte" | |
selected_fonte = st.selectbox('Finalidade', data['Fonte'].unique(), index=data['Fonte'].unique().tolist().index('Venda')) | |
data = data[data['Fonte'] == selected_fonte] | |
# Add a dropdown for filtering "Tipo" | |
selected_tipo = st.selectbox('Tipo de imóvel', data['Tipo'].unique(), index=data['Tipo'].unique().tolist().index('Terreno')) | |
data_tipo = data[data['Tipo'] == selected_tipo] | |
custom_address = st.text_input('Informe o endereço', custom_address_initial) | |
radius_visible = True # Show radius slider for custom coordinates | |
gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') # Replace with your API key | |
try: | |
# Ensure custom_address ends with " - RS, Brazil" | |
custom_address = custom_address.strip() # Remove leading/trailing whitespaces | |
if not custom_address.endswith(" - RS, Brazil"): | |
custom_address += " - RS, Brazil" | |
location = gmaps.geocode(custom_address)[0]['geometry']['location'] | |
custom_lat, custom_lon = location['lat'], location['lng'] | |
except (IndexError, GeocoderTimedOut): | |
st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.") | |
# Slider for setting the zoom level | |
zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level) | |
# Conditionally render the radius slider | |
if radius_visible: | |
radius_in_meters = st.number_input('Selecione raio (em metros)', min_value=0, max_value=100000, value=2000) | |
# Add sliders to filter data based | |
atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1 if data_tipo['Atotal'].min() != data_tipo['Atotal'].max() else 0.1) | |
apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1 if data_tipo['Apriv'].min() != data_tipo['Apriv'].max() else 0.1) | |
data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) & | |
(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1]))] | |
# Links to other apps at the bottom of the sidebar | |
st.sidebar.markdown(factor_html, unsafe_allow_html=True) | |
st.sidebar.markdown(evo_html, unsafe_allow_html=True) | |
filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters] | |
filtered_data = filtered_data.dropna() # Drop rows with NaN values | |
# Add a custom CSS class to the map container | |
st.markdown(f"""<style> | |
.map {{ | |
width: 100%; | |
height: 100vh; | |
}} | |
</style>""", unsafe_allow_html=True) | |
# Determine which area feature to use for prediction | |
filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal']) | |
# Define the target column based on conditions | |
filtered_data['target_column'] = np.where(filtered_data['Vunit_priv'] != 0, filtered_data['Vunit_priv'], filtered_data['Vunit_total']) | |
# Apply KNN and get predicted target values | |
predicted_target = knn_predict(filtered_data, 'target_column', ['latitude', 'longitude', 'area_feature']) # Update with your features | |
# Add predicted target values to filtered_data | |
filtered_data['Predicted_target'] = predicted_target | |
with st.container(): | |
st.map(filtered_data, zoom=zoom_level, use_container_width=True) | |
st.write("Dados:", filtered_data) # Debug: Print filtered_data | |
if st.button('Baixar planilha'): | |
st.write("Preparando...") | |
# Set up the file to be downloaded | |
output_df = filtered_data | |
# Create a BytesIO buffer to hold the Excel file | |
excel_buffer = BytesIO() | |
# Convert DataFrame to Excel and save to the buffer | |
with pd.ExcelWriter(excel_buffer, engine="xlsxwriter") as writer: | |
output_df.to_excel(writer, index=False, sheet_name="Sheet1") | |
# Reset the buffer position to the beginning | |
excel_buffer.seek(0) | |
# Create a download link | |
b64 = base64.b64encode(excel_buffer.read()).decode() | |
href = f'<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" download="sample_data.xlsx">Clique aqui para baixar a planilha</a>' | |
#st.markdown(href, unsafe_allow_html=True) | |
# Use st.empty() to create a placeholder and update it with the link | |
download_placeholder = st.empty() | |
download_placeholder.markdown(href, unsafe_allow_html=True) | |
folium_layermap = folium.Map(location=[custom_lat, custom_lon], zoom_start=zoom_level, control_scale=True) | |
# Add heatmap layers for 'Valor_Urb', 'Valor_Eqp', and 'RENDA' | |
add_heatmap_layer(folium_layermap, filtered_data, 'Valor_Urb', 'RdBu_r') | |
add_heatmap_layer(folium_layermap, filtered_data, 'Valor_Eqp', 'RdBu_r') | |
add_heatmap_layer(folium_layermap, filtered_data, 'RENDA', 'RdBu_r') | |
# Add layer control | |
folium.LayerControl().add_to(folium_layermap) | |
# Display the map using st_folium | |
st_folium(folium_layermap, width=900, height=350) | |
k_threshold = 5 | |
# Function to perform bootstrap on the predicted target values | |
def bootstrap_stats(bound_data, num_samples=1000): | |
# Reshape the predicted_target array | |
bound_data = np.array(bound_data).reshape(-1, 1) | |
# Bootstrap resampling | |
bootstrapped_means = [] | |
for _ in range(num_samples): | |
bootstrap_sample = np.random.choice(bound_data.flatten(), len(bound_data), replace=True) | |
bootstrapped_means.append(np.mean(bootstrap_sample)) | |
# Calculate lower and higher bounds | |
lower_bound = np.percentile(bootstrapped_means, 16.) | |
higher_bound = np.percentile(bootstrapped_means, 84.) | |
return lower_bound, higher_bound | |
# Apply KNN and get predicted Predicted_target values | |
predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature']) | |
# Check if there are predictions to display | |
if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0): | |
# Apply bootstrap - bounds | |
lower_bound, higher_bound = bootstrap_stats(filtered_data['target_column']) | |
mean_value = np.mean(filtered_data['Predicted_target']) | |
# Display the results with custom styling | |
st.markdown("## **Resultado da Análise Estatística**") | |
st.write(f"Valor médio (Reais/m²) para as características selecionadas: ${mean_value:.2f}$ Reais") | |
st.write(f"Os valores podem variar entre ${lower_bound:.2f}$ e ${higher_bound:.2f}$ Reais, dependendo das características dos imóveis.") | |
else: | |
st.warning(f"**Dados insuficientes para inferência do valor. Mínimo necessário:** {k_threshold}") |