Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -119,60 +119,53 @@ class VectorRAGSystem:
|
|
119 |
return False
|
120 |
|
121 |
def load_vector_data(self) -> bool:
|
122 |
-
"""Загрузка векторных данных"""
|
123 |
try:
|
124 |
print("🔄 Попытка загрузки векторных данных...")
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
metadata_file = "metadata.json"
|
129 |
-
|
130 |
if not all(os.path.exists(f) for f in [faiss_file, metadata_file]):
|
131 |
-
print("📁
|
132 |
return False
|
133 |
|
134 |
-
#
|
135 |
with open(metadata_file, 'r', encoding='utf-8') as f:
|
136 |
metadata_list = json.load(f)
|
|
|
137 |
|
138 |
-
#
|
139 |
self.chunks = []
|
140 |
for i, item in enumerate(metadata_list):
|
141 |
-
# унифицируем идентификатор чанка
|
142 |
chunk_id = item.get("chunk_id",
|
143 |
item.get("table_id",
|
144 |
item.get("img_id", None)))
|
145 |
-
|
146 |
self.chunks.append({
|
147 |
"page": item["page"],
|
148 |
"chunk_id": chunk_id,
|
149 |
"chunk_index": i,
|
150 |
-
"text": "",
|
151 |
-
"metadata":
|
152 |
})
|
153 |
|
154 |
-
#
|
155 |
-
self.metadata = {"total_chunks": len(self.chunks)}
|
156 |
-
|
157 |
-
# Загружаем FAISS-индекс
|
158 |
if HAS_FAISS:
|
159 |
self.faiss_index = faiss.read_index(faiss_file)
|
160 |
|
161 |
-
# Загружаем PDF для parent-page enrichment
|
162 |
pdf_path = "data/Сбер 2023.pdf"
|
163 |
if os.path.exists(pdf_path):
|
164 |
-
import fitz
|
165 |
self.pdf_doc = fitz.open(pdf_path)
|
166 |
print(f"✅ PDF загружен: {self.pdf_doc.page_count} страниц")
|
167 |
else:
|
168 |
-
print("❌ PDF
|
169 |
self.pdf_doc = None
|
170 |
|
171 |
-
print(f"✅ Загружены
|
172 |
return True
|
173 |
-
|
174 |
except Exception as e:
|
175 |
-
print(f"❌ Ошибка
|
176 |
return False
|
177 |
|
178 |
def get_page_text(self, page_num: int) -> str:
|
@@ -234,42 +227,37 @@ class VectorRAGSystem:
|
|
234 |
return []
|
235 |
|
236 |
def vector_search(self, query: str, k: int = 20) -> List[Tuple[Dict, float]]:
|
237 |
-
"""Векторный поиск
|
238 |
-
if not self.faiss_index or not self.client:
|
239 |
-
print("⚠️ FAISS индекс или OpenAI клиент недоступны")
|
240 |
-
return []
|
241 |
-
|
242 |
try:
|
243 |
-
# Создаем эмбеддинг для запроса
|
244 |
response = self.client.embeddings.create(
|
245 |
model=self.embedding_model,
|
246 |
input=[query]
|
247 |
)
|
|
|
|
|
|
|
248 |
|
249 |
-
query_embedding = np.array(response.data[0].embedding, dtype=np.float32)
|
250 |
-
query_embedding = query_embedding.reshape(1, -1)
|
251 |
-
|
252 |
-
# Нормализуем для Inner Product
|
253 |
-
faiss.normalize_L2(query_embedding)
|
254 |
-
|
255 |
-
# Поиск в FAISS индексе
|
256 |
-
scores, indices = self.faiss_index.search(query_embedding, k)
|
257 |
-
|
258 |
-
# Формируем результаты с parent-page enrichment
|
259 |
results = []
|
260 |
for score, idx in zip(scores[0], indices[0]):
|
261 |
if 0 <= idx < len(self.chunks):
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
return results
|
269 |
-
|
270 |
except Exception as e:
|
271 |
-
print(f"❌ Ошибка
|
272 |
-
print("⚠️ Переход на поиск без векторов невозможен")
|
273 |
return []
|
274 |
|
275 |
def rerank_with_llm(self, query: str, chunks: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float]]:
|
|
|
119 |
return False
|
120 |
|
121 |
def load_vector_data(self) -> bool:
|
122 |
+
"""Загрузка векторных данных и сохранение полной metadata_list с caption."""
|
123 |
try:
|
124 |
print("🔄 Попытка загрузки векторных данных...")
|
125 |
|
126 |
+
faiss_file = "chunks_flatip.faiss"
|
127 |
+
metadata_file = "metadata.json"
|
|
|
|
|
128 |
if not all(os.path.exists(f) for f in [faiss_file, metadata_file]):
|
129 |
+
print("📁 Векторные файлы не найдены")
|
130 |
return False
|
131 |
|
132 |
+
# 1) Читаем весь список метаданных, сохраняем его
|
133 |
with open(metadata_file, 'r', encoding='utf-8') as f:
|
134 |
metadata_list = json.load(f)
|
135 |
+
self.metadata_list = metadata_list
|
136 |
|
137 |
+
# 2) Строим self.chunks, сохраняя каждый item целиком
|
138 |
self.chunks = []
|
139 |
for i, item in enumerate(metadata_list):
|
|
|
140 |
chunk_id = item.get("chunk_id",
|
141 |
item.get("table_id",
|
142 |
item.get("img_id", None)))
|
|
|
143 |
self.chunks.append({
|
144 |
"page": item["page"],
|
145 |
"chunk_id": chunk_id,
|
146 |
"chunk_index": i,
|
147 |
+
"text": "", # заполним в vector_search
|
148 |
+
"metadata": item # здесь есть caption, type и т.д.
|
149 |
})
|
150 |
|
151 |
+
# 3) Загружаем FAISS-индекс
|
|
|
|
|
|
|
152 |
if HAS_FAISS:
|
153 |
self.faiss_index = faiss.read_index(faiss_file)
|
154 |
|
155 |
+
# 4) Загружаем PDF для parent-page enrichment
|
156 |
pdf_path = "data/Сбер 2023.pdf"
|
157 |
if os.path.exists(pdf_path):
|
158 |
+
import fitz
|
159 |
self.pdf_doc = fitz.open(pdf_path)
|
160 |
print(f"✅ PDF загружен: {self.pdf_doc.page_count} страниц")
|
161 |
else:
|
162 |
+
print("❌ PDF не найден для enrichment")
|
163 |
self.pdf_doc = None
|
164 |
|
165 |
+
print(f"✅ Загружены векторы: {len(self.chunks)} чанков")
|
166 |
return True
|
|
|
167 |
except Exception as e:
|
168 |
+
print(f"❌ Ошибка load_vector_data: {e}")
|
169 |
return False
|
170 |
|
171 |
def get_page_text(self, page_num: int) -> str:
|
|
|
227 |
return []
|
228 |
|
229 |
def vector_search(self, query: str, k: int = 20) -> List[Tuple[Dict, float]]:
|
230 |
+
"""Векторный поиск + enrichment с caption из metadata_list."""
|
|
|
|
|
|
|
|
|
231 |
try:
|
|
|
232 |
response = self.client.embeddings.create(
|
233 |
model=self.embedding_model,
|
234 |
input=[query]
|
235 |
)
|
236 |
+
q_emb = np.array(response.data[0].embedding, dtype=np.float32).reshape(1, -1)
|
237 |
+
faiss.normalize_L2(q_emb)
|
238 |
+
scores, indices = self.faiss_index.search(q_emb, k)
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
results = []
|
241 |
for score, idx in zip(scores[0], indices[0]):
|
242 |
if 0 <= idx < len(self.chunks):
|
243 |
+
record = self.chunks[idx].copy()
|
244 |
+
meta_item = self.metadata_list[idx]
|
245 |
+
|
246 |
+
# базовый текст страницы
|
247 |
+
page_text = self.get_page_text(record["page"]) or ""
|
248 |
+
|
249 |
+
# если это картинка и есть caption — добавляем его сверху
|
250 |
+
if meta_item.get("type") == "image" and meta_item.get("caption"):
|
251 |
+
caption = meta_item["caption"]
|
252 |
+
record["text"] = caption + "\n\n" + page_text
|
253 |
+
else:
|
254 |
+
record["text"] = page_text
|
255 |
+
|
256 |
+
results.append((record, float(score)))
|
257 |
return results
|
258 |
+
|
259 |
except Exception as e:
|
260 |
+
print(f"❌ Ошибка vector_search: {e}")
|
|
|
261 |
return []
|
262 |
|
263 |
def rerank_with_llm(self, query: str, chunks: List[Tuple[Dict, float]]) -> List[Tuple[Dict, float]]:
|