Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +86 -41
tasks/text.py
CHANGED
|
@@ -21,6 +21,63 @@ router = APIRouter()
|
|
| 21 |
DESCRIPTION = "First Baseline"
|
| 22 |
ROUTE = "/text"
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
@router.post(ROUTE, tags=["Text Task"],
|
| 25 |
description=DESCRIPTION)
|
| 26 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
@@ -64,53 +121,41 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 64 |
# YOUR MODEL INFERENCE CODE HERE
|
| 65 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 66 |
#--------------------------------------------------------------------------------------------
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def __init__(self, num_classes):
|
| 73 |
-
super().__init__()
|
| 74 |
-
self.n_classes = num_classes
|
| 75 |
-
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
| 76 |
-
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
|
| 77 |
-
|
| 78 |
-
self.sigmoid = nn.Sigmoid()
|
| 79 |
-
|
| 80 |
-
def forward(self, input_ids, token_type_ids, input_mask):
|
| 81 |
-
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
|
| 82 |
-
|
| 83 |
-
logits = outputs[1]
|
| 84 |
-
|
| 85 |
-
return logits
|
| 86 |
-
model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline")
|
| 87 |
-
model.eval()
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
|
| 91 |
-
|
| 92 |
-
test_texts = [t['quote'] for t in test_dataset]
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
|
|
|
|
| 109 |
predictions = []
|
| 110 |
-
c=0
|
| 111 |
for batch in tqdm(test_dataloader):
|
| 112 |
-
print(c)
|
| 113 |
-
c+=1
|
| 114 |
|
| 115 |
b_input_ids, b_input_mask, b_token_type_ids = batch
|
| 116 |
with torch.no_grad():
|
|
|
|
| 21 |
DESCRIPTION = "First Baseline"
|
| 22 |
ROUTE = "/text"
|
| 23 |
|
| 24 |
+
|
| 25 |
+
MODEL = "mlp" #mlp, ct, modern
|
| 26 |
+
|
| 27 |
+
class ConspiracyClassification(
|
| 28 |
+
nn.Module,
|
| 29 |
+
PyTorchModelHubMixin,
|
| 30 |
+
# optionally, you can add metadata which gets pushed to the model card
|
| 31 |
+
):
|
| 32 |
+
def __init__(self, num_classes):
|
| 33 |
+
super().__init__()
|
| 34 |
+
self.h1 = nn.Linear(384, 100)
|
| 35 |
+
self.h2 = nn.Linear(100, 100)
|
| 36 |
+
self.h3 = nn.Linear(100, 100)
|
| 37 |
+
self.h4 = nn.Linear(100, 50)
|
| 38 |
+
self.h5 = nn.Linear(50, num_classes)
|
| 39 |
+
self.dropout = nn.Dropout(0.2)
|
| 40 |
+
self.activation = nn.ReLU()
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def forward(self, input_texts):
|
| 44 |
+
outputs = self.h1(input_texts)
|
| 45 |
+
outputs = self.activation(outputs)
|
| 46 |
+
outputs = self.dropout(outputs)
|
| 47 |
+
outputs = self.h2(outputs)
|
| 48 |
+
outputs = self.activation(outputs)
|
| 49 |
+
outputs = self.dropout(outputs)
|
| 50 |
+
outputs = self.h3(outputs)
|
| 51 |
+
outputs = self.activation(outputs)
|
| 52 |
+
outputs = self.dropout(outputs)
|
| 53 |
+
outputs = self.h4(outputs)
|
| 54 |
+
outputs = self.activation(outputs)
|
| 55 |
+
outputs = self.dropout(outputs)
|
| 56 |
+
outputs = self.h5(outputs)
|
| 57 |
+
|
| 58 |
+
return outputs
|
| 59 |
+
|
| 60 |
+
class CovidTwitterBertClassifier(
|
| 61 |
+
nn.Module,
|
| 62 |
+
PyTorchModelHubMixin,
|
| 63 |
+
# optionally, you can add metadata which gets pushed to the model card
|
| 64 |
+
):
|
| 65 |
+
def __init__(self, num_classes):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.n_classes = num_classes
|
| 68 |
+
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
| 69 |
+
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
|
| 70 |
+
|
| 71 |
+
self.sigmoid = nn.Sigmoid()
|
| 72 |
+
|
| 73 |
+
def forward(self, input_ids, token_type_ids, input_mask):
|
| 74 |
+
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
|
| 75 |
+
|
| 76 |
+
logits = outputs[1]
|
| 77 |
+
|
| 78 |
+
return logits
|
| 79 |
+
|
| 80 |
+
|
| 81 |
@router.post(ROUTE, tags=["Text Task"],
|
| 82 |
description=DESCRIPTION)
|
| 83 |
async def evaluate_text(request: TextEvaluationRequest):
|
|
|
|
| 121 |
# YOUR MODEL INFERENCE CODE HERE
|
| 122 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 123 |
#--------------------------------------------------------------------------------------------
|
| 124 |
+
if MODEL =="mlp":
|
| 125 |
+
model = ConspiracyClassification.from_pretrained("ypesk/frugal-ai-mlp-baseline")
|
| 126 |
+
|
| 127 |
+
emb_model = SentenceTransformer("paraphrase-MiniLM-L3-v2")
|
| 128 |
+
batch_size = 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset]))
|
| 131 |
+
test_data = TensorDataset(test_texts)
|
| 132 |
+
test_sampler = SequentialSampler(test_data)
|
| 133 |
+
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
|
| 134 |
+
|
| 135 |
+
elif MODEL == "ct":
|
| 136 |
+
model = CovidTwitterBertClassifier.from_pretrained("ypesk/ct-baseline")
|
| 137 |
+
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
|
| 138 |
+
|
| 139 |
+
test_texts = [t['quote'] for t in test_dataset]
|
| 140 |
|
| 141 |
+
MAX_LEN = 256 #1024 # < m some tweets will be truncated
|
| 142 |
+
|
| 143 |
+
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
|
| 144 |
+
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
|
| 145 |
+
test_token_type_ids = torch.tensor(test_token_type_ids)
|
| 146 |
+
|
| 147 |
+
test_input_ids = torch.tensor(test_input_ids)
|
| 148 |
+
test_attention_mask = torch.tensor(test_attention_mask)
|
| 149 |
|
| 150 |
+
batch_size = 12 #
|
| 151 |
+
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
|
| 152 |
+
|
| 153 |
+
test_sampler = SequentialSampler(test_data)
|
| 154 |
+
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
|
| 155 |
|
| 156 |
+
model.eval()
|
| 157 |
predictions = []
|
|
|
|
| 158 |
for batch in tqdm(test_dataloader):
|
|
|
|
|
|
|
| 159 |
|
| 160 |
b_input_ids, b_input_mask, b_token_type_ids = batch
|
| 161 |
with torch.no_grad():
|