Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- .gitattributes +1 -0
- app.py +44 -0
- model_best2.hdf5 +3 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
model_best2.hdf5 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
st.title('Dog Classification')
|
7 |
+
|
8 |
+
# import the model
|
9 |
+
|
10 |
+
model = load_model('model_best2.hdf5')
|
11 |
+
|
12 |
+
# define the preprocessing function
|
13 |
+
|
14 |
+
def preprocess_image(image):
|
15 |
+
image = image.resize((240, 240)) # resize the image to the desired dimensions
|
16 |
+
image = image.convert("RGB") # convert the image to RGB mode if needed
|
17 |
+
image = np.array(image) # convert the image to a NumPy array
|
18 |
+
image = image / 255.0 # normalize the pixel values to the range of 0 to 1
|
19 |
+
image = np.expand_dims(image, axis=0) # add an extra dimension for batch size
|
20 |
+
return image
|
21 |
+
|
22 |
+
# define the prediction function
|
23 |
+
|
24 |
+
def prediction(image):
|
25 |
+
preprocessed_image = preprocess_image(image)
|
26 |
+
classes = model.predict(preprocessed_image)
|
27 |
+
predicted_class_index = np.argmax(classes)
|
28 |
+
class_labels = ['Afghan', 'Bulldog', 'Chow']
|
29 |
+
predicted_class = class_labels[predicted_class_index]
|
30 |
+
return predicted_class
|
31 |
+
|
32 |
+
# file uploader
|
33 |
+
|
34 |
+
uploaded_file = st.file_uploader("Upload your Dog Picture.")
|
35 |
+
|
36 |
+
# result
|
37 |
+
|
38 |
+
if st.button('Predict'):
|
39 |
+
if uploaded_file is None:
|
40 |
+
st.write('Please upload your favorite dog to purchase picture first.')
|
41 |
+
else:
|
42 |
+
image = Image.open(uploaded_file)
|
43 |
+
result = prediction(image)
|
44 |
+
st.write('This Dog belongs to the {} class.'.format(result))
|
model_best2.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ce0f72cdaa4afeb9c783092a95e34c5a1cd5df7157498b575af29b4b167c09b
|
3 |
+
size 86876584
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
numpy
|
3 |
+
tensorflow
|
4 |
+
Pillow
|