Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files
pages/Entorno de Ejecución.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.models import load_model
|
4 |
import os
|
|
|
5 |
|
6 |
st.set_page_config(
|
7 |
page_title = 'Patacotrón',
|
@@ -55,10 +56,19 @@ with cnn:
|
|
55 |
@tf.function
|
56 |
def predict(model_list, img):
|
57 |
y_gorrito = 0
|
|
|
|
|
58 |
for model in model_list:
|
59 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
60 |
-
return y_gorrito / len(model_list)
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Set the image dimensions
|
63 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
64 |
|
@@ -71,22 +81,33 @@ with cnn:
|
|
71 |
if st.button('¿Hay un patacón en la imagen?'):
|
72 |
if len(selected_models) > 0 and ultra_flag:
|
73 |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
|
|
|
74 |
elif uploaded_file is not None:
|
75 |
-
|
76 |
-
raw_img = tf.image.decode_image(uploaded_file.read(), channels=3)
|
77 |
-
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT))
|
78 |
-
|
79 |
-
# Pass the image to the model and get the prediction
|
80 |
if ultra_flag:
|
81 |
with st.spinner('Cargando ultra-predicción...'):
|
82 |
if not executed:
|
83 |
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
84 |
executed = True
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
else:
|
87 |
with st.spinner('Cargando predicción...'):
|
88 |
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models]
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
if round(float(y_gorrito*100)) >= threshold:
|
92 |
st.success("¡Patacón Detectado!")
|
|
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.models import load_model
|
4 |
import os
|
5 |
+
import cv2
|
6 |
|
7 |
st.set_page_config(
|
8 |
page_title = 'Patacotrón',
|
|
|
56 |
@tf.function
|
57 |
def predict(model_list, img):
|
58 |
y_gorrito = 0
|
59 |
+
raw_img = tf.image.decode_image(img, channels=3)
|
60 |
+
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT))
|
61 |
for model in model_list:
|
62 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
63 |
+
return [y_gorrito / len(model_list), raw_img]
|
64 |
+
|
65 |
+
def preprocess(file_uploader): #converts it to .png
|
66 |
+
img = cv2.imdecode(bytearray(file_uploader.read()), cv2.IMREAD_COLOR)
|
67 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
68 |
+
img_tensor = tf.convert_to_tensor(img, dtype=tf.uint8)
|
69 |
+
png_bytes = tf.io.encode_png(img_tensor)
|
70 |
+
return png_bytes
|
71 |
+
|
72 |
# Set the image dimensions
|
73 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
74 |
|
|
|
81 |
if st.button('¿Hay un patacón en la imagen?'):
|
82 |
if len(selected_models) > 0 and ultra_flag:
|
83 |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
|
84 |
+
|
85 |
elif uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
|
86 |
if ultra_flag:
|
87 |
with st.spinner('Cargando ultra-predicción...'):
|
88 |
if not executed:
|
89 |
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
90 |
executed = True
|
91 |
+
try:
|
92 |
+
y_gorrito, raw_img = predict(ultraptctrn, img)
|
93 |
+
except:
|
94 |
+
y_gorrito, raw_img = predict(ultraptctrn, preprocess(img))
|
95 |
+
|
96 |
+
|
97 |
+
# Pass the image to the model and get the prediction
|
98 |
+
# if ultra_flag:
|
99 |
+
# with st.spinner('Cargando ultra-predicción...'):
|
100 |
+
# if not executed:
|
101 |
+
# ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
102 |
+
# executed = True
|
103 |
+
#y_gorrito = predict(ultraptctrn, img)
|
104 |
else:
|
105 |
with st.spinner('Cargando predicción...'):
|
106 |
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models]
|
107 |
+
try:
|
108 |
+
y_gorrito, raw_img = predict(selected_models, img)
|
109 |
+
except:
|
110 |
+
y_gorrito, raw_img = predict(selected_models, preprocess(img))
|
111 |
|
112 |
if round(float(y_gorrito*100)) >= threshold:
|
113 |
st.success("¡Patacón Detectado!")
|