Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files
pages/Entorno de Ejecución.py
CHANGED
@@ -50,7 +50,8 @@ headers = {"Authorization": f"Bearer {st.secrets['token']}"}
|
|
50 |
|
51 |
def query(data, models): #HF API
|
52 |
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data)
|
53 |
-
|
|
|
54 |
while "error" in response.json():
|
55 |
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data)
|
56 |
return response.json()[1]["score"] #.json
|
@@ -176,15 +177,15 @@ with vit:
|
|
176 |
elif uploaded_file is not None:
|
177 |
with st.spinner('Cargando predicción...'):
|
178 |
|
179 |
-
y_gorritoo = query(uploaded_file.read(), model_dict[model_choice[0]])
|
180 |
-
st.write(y_gorritoo)
|
181 |
#classifiers = [pipeline("image-classification", model= model_dict[model_choice[i]]) for i in range(len(model_choice))]
|
182 |
|
183 |
#classifier = pipeline("image-classification", model= model_dict[model_choice[0]])
|
184 |
img = preprocess(uploaded_file, module = 'pil')
|
185 |
|
186 |
models = [model_dict[model] for model in model_choice]
|
187 |
-
st.write(models)
|
188 |
#def vit_ensemble(classifier_list, img):
|
189 |
# y_gorrito = 0
|
190 |
# for classifier in classifier_list:
|
@@ -207,6 +208,9 @@ with vit:
|
|
207 |
i+=1
|
208 |
st.write("y gorrito a cargar")
|
209 |
a = query(uploaded_file.read(), model)
|
|
|
|
|
|
|
210 |
st.write("query terminado")
|
211 |
y_gorrito += a
|
212 |
st.write("y gorrito cargado")
|
|
|
50 |
|
51 |
def query(data, models): #HF API
|
52 |
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data)
|
53 |
+
if response.json()["error"] == "Internal Server Error":
|
54 |
+
return -1
|
55 |
while "error" in response.json():
|
56 |
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data)
|
57 |
return response.json()[1]["score"] #.json
|
|
|
177 |
elif uploaded_file is not None:
|
178 |
with st.spinner('Cargando predicción...'):
|
179 |
|
180 |
+
#y_gorritoo = query(uploaded_file.read(), model_dict[model_choice[0]])
|
181 |
+
#st.write(y_gorritoo)
|
182 |
#classifiers = [pipeline("image-classification", model= model_dict[model_choice[i]]) for i in range(len(model_choice))]
|
183 |
|
184 |
#classifier = pipeline("image-classification", model= model_dict[model_choice[0]])
|
185 |
img = preprocess(uploaded_file, module = 'pil')
|
186 |
|
187 |
models = [model_dict[model] for model in model_choice]
|
188 |
+
#st.write(models)
|
189 |
#def vit_ensemble(classifier_list, img):
|
190 |
# y_gorrito = 0
|
191 |
# for classifier in classifier_list:
|
|
|
208 |
i+=1
|
209 |
st.write("y gorrito a cargar")
|
210 |
a = query(uploaded_file.read(), model)
|
211 |
+
if a == -1:
|
212 |
+
st.write("Los servidores se encuentrar caídos, intente más tarde")
|
213 |
+
break
|
214 |
st.write("query terminado")
|
215 |
y_gorrito += a
|
216 |
st.write("y gorrito cargado")
|