Spaces:
Runtime error
Runtime error
inital commit
Browse files- app.py +160 -0
- packages.txt +1 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
import re
|
| 4 |
+
import difflib
|
| 5 |
+
import torch
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
+
# -------- Sentences to practice (customize freely) ----------
|
| 10 |
+
SENTENCE_BANK = [
|
| 11 |
+
"The quick brown fox jumps over the lazy dog.",
|
| 12 |
+
"I promise to speak clearly and at a steady pace.",
|
| 13 |
+
"Open source makes AI more transparent and inclusive.",
|
| 14 |
+
"Hugging Face Spaces make demos easy to share.",
|
| 15 |
+
"Today the weather in Berlin is pleasantly cool.",
|
| 16 |
+
"Privacy and transparency should go hand in hand.",
|
| 17 |
+
"Please generate a new sentence for me to read.",
|
| 18 |
+
"Machine learning can amplify or reduce inequality.",
|
| 19 |
+
"Responsible AI requires participation from everyone.",
|
| 20 |
+
"This microphone test checks my pronunciation accuracy.",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
# -------- Utilities ----------
|
| 24 |
+
def normalize_text(t: str) -> str:
|
| 25 |
+
t = t.lower()
|
| 26 |
+
# keep letters and numbers, replace anything else with space
|
| 27 |
+
t = re.sub(r"[^a-z0-9'äöüßçéèêáàóòúùîïôñ\-]+", " ", t)
|
| 28 |
+
# collapse whitespace
|
| 29 |
+
t = re.sub(r"\s+", " ", t).strip()
|
| 30 |
+
return t
|
| 31 |
+
|
| 32 |
+
def similarity_and_diff(ref: str, hyp: str):
|
| 33 |
+
"""Return similarity ratio (0..1) and HTML diff highlighting changes."""
|
| 34 |
+
ref_tokens = ref.split()
|
| 35 |
+
hyp_tokens = hyp.split()
|
| 36 |
+
sm = difflib.SequenceMatcher(a=ref_tokens, b=hyp_tokens)
|
| 37 |
+
ratio = sm.ratio()
|
| 38 |
+
|
| 39 |
+
# Build HTML with insertions/deletions highlighted
|
| 40 |
+
out = []
|
| 41 |
+
for op, i1, i2, j1, j2 in sm.get_opcodes():
|
| 42 |
+
if op == "equal":
|
| 43 |
+
out.append(" " + " ".join(ref_tokens[i1:i2]))
|
| 44 |
+
elif op == "delete":
|
| 45 |
+
out.append(' <span style="background:#ffe0e0;text-decoration:line-through;">'
|
| 46 |
+
+ " ".join(ref_tokens[i1:i2]) + "</span>")
|
| 47 |
+
elif op == "insert":
|
| 48 |
+
out.append(' <span style="background:#e0ffe0;">'
|
| 49 |
+
+ " ".join(hyp_tokens[j1:j2]) + "</span>")
|
| 50 |
+
elif op == "replace":
|
| 51 |
+
out.append(' <span style="background:#ffe0e0;text-decoration:line-through;">'
|
| 52 |
+
+ " ".join(ref_tokens[i1:i2]) + "</span>")
|
| 53 |
+
out.append(' <span style="background:#e0ffe0;">'
|
| 54 |
+
+ " ".join(hyp_tokens[j1:j2]) + "</span>")
|
| 55 |
+
html = '<div style="line-height:1.6;font-size:1rem;">' + "".join(out).strip() + "</div>"
|
| 56 |
+
return ratio, html
|
| 57 |
+
|
| 58 |
+
@lru_cache(maxsize=2)
|
| 59 |
+
def get_asr(model_id: str, device_preference: str):
|
| 60 |
+
"""Cache an ASR pipeline. device_preference: 'auto'|'cpu'|'cuda'."""
|
| 61 |
+
if device_preference == "cuda" and torch.cuda.is_available():
|
| 62 |
+
device = 0
|
| 63 |
+
elif device_preference == "auto":
|
| 64 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 65 |
+
else:
|
| 66 |
+
device = -1
|
| 67 |
+
return pipeline(
|
| 68 |
+
"automatic-speech-recognition",
|
| 69 |
+
model=model_id,
|
| 70 |
+
device=device,
|
| 71 |
+
chunk_length_s=30,
|
| 72 |
+
return_timestamps=False,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def gen_sentence():
|
| 76 |
+
return random.choice(SENTENCE_BANK)
|
| 77 |
+
|
| 78 |
+
def check_pronunciation(audio_path, target_sentence, model_id, lang, device_pref, pass_threshold):
|
| 79 |
+
if not target_sentence:
|
| 80 |
+
return gr.update(value=""), gr.update(value=""), gr.update(value=""), gr.update(value="Please generate a sentence first.")
|
| 81 |
+
|
| 82 |
+
asr = get_asr(model_id, device_pref)
|
| 83 |
+
# Whisper models accept a 'generate' kwarg with language hints via tokenizer, but
|
| 84 |
+
# transformers pipeline exposes it as 'generate_kwargs' for whisper models.
|
| 85 |
+
try:
|
| 86 |
+
result = asr(audio_path, generate_kwargs={"language": lang} if lang else None)
|
| 87 |
+
hyp_raw = result["text"].strip()
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return "", "", "", f"Transcription failed: {e}"
|
| 90 |
+
|
| 91 |
+
ref_norm = normalize_text(target_sentence)
|
| 92 |
+
hyp_norm = normalize_text(hyp_raw)
|
| 93 |
+
|
| 94 |
+
ratio, diff_html = similarity_and_diff(ref_norm, hyp_norm)
|
| 95 |
+
passed = ratio >= pass_threshold
|
| 96 |
+
|
| 97 |
+
summary = (
|
| 98 |
+
f"✅ Correct (≥ {int(pass_threshold*100)}%)"
|
| 99 |
+
if passed else
|
| 100 |
+
f"❌ Not a match (need ≥ {int(pass_threshold*100)}%)"
|
| 101 |
+
)
|
| 102 |
+
score = f"Similarity: {ratio*100:.1f}%"
|
| 103 |
+
|
| 104 |
+
return hyp_raw, score, diff_html, summary
|
| 105 |
+
|
| 106 |
+
with gr.Blocks(title="Say the Sentence") as demo:
|
| 107 |
+
gr.Markdown(
|
| 108 |
+
"""
|
| 109 |
+
# 🎤 Say the Sentence
|
| 110 |
+
1) Generate a sentence.
|
| 111 |
+
2) Press the mic to record yourself reading it.
|
| 112 |
+
3) Transcribe & check.
|
| 113 |
+
"""
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
with gr.Row():
|
| 117 |
+
target = gr.Textbox(label="Target sentence", interactive=False, placeholder="Click 'Generate sentence'")
|
| 118 |
+
with gr.Row():
|
| 119 |
+
btn_gen = gr.Button("🎲 Generate sentence", variant="primary")
|
| 120 |
+
btn_clear = gr.Button("🧹 Clear")
|
| 121 |
+
|
| 122 |
+
with gr.Row():
|
| 123 |
+
audio = gr.Audio(sources=["microphone"], type="filepath", label="Record your voice")
|
| 124 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 125 |
+
model_id = gr.Dropdown(
|
| 126 |
+
choices=[
|
| 127 |
+
"openai/whisper-tiny.en", # Fastest (English)
|
| 128 |
+
"openai/whisper-base.en",
|
| 129 |
+
"openai/whisper-small.en",
|
| 130 |
+
"distil-whisper/distil-small.en", # Distil variant (English)
|
| 131 |
+
"openai/whisper-tiny", # Multilingual tiny
|
| 132 |
+
],
|
| 133 |
+
value="openai/whisper-tiny.en",
|
| 134 |
+
label="ASR model",
|
| 135 |
+
)
|
| 136 |
+
lang = gr.Textbox(value="en", label="Language hint (e.g., 'en', 'de', 'fr')", info="Whisper language code; leave as 'en' for English-only models.")
|
| 137 |
+
device_pref = gr.Radio(choices=["auto", "cpu", "cuda"], value="auto", label="Device preference")
|
| 138 |
+
pass_threshold = gr.Slider(0.50, 1.00, value=0.85, step=0.01, label="Match threshold")
|
| 139 |
+
|
| 140 |
+
with gr.Row():
|
| 141 |
+
btn_check = gr.Button("✅ Transcribe & Check", variant="primary")
|
| 142 |
+
|
| 143 |
+
with gr.Row():
|
| 144 |
+
hyp_out = gr.Textbox(label="Transcription", interactive=False)
|
| 145 |
+
with gr.Row():
|
| 146 |
+
score_out = gr.Label(label="Score")
|
| 147 |
+
summary_out = gr.Label(label="Result")
|
| 148 |
+
diff_out = gr.HTML(label="Word-level diff (red = expected but missing / green = extra or replacement)")
|
| 149 |
+
|
| 150 |
+
# Events
|
| 151 |
+
btn_gen.click(fn=gen_sentence, outputs=target)
|
| 152 |
+
btn_clear.click(fn=lambda: ("", "", "", "", ""), outputs=[target, hyp_out, score_out, diff_out, summary_out])
|
| 153 |
+
btn_check.click(
|
| 154 |
+
fn=check_pronunciation,
|
| 155 |
+
inputs=[audio, target, model_id, lang, device_pref, pass_threshold],
|
| 156 |
+
outputs=[hyp_out, score_out, diff_out, summary_out]
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
if __name__ == "__main__":
|
| 160 |
+
demo.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.39.0
|
| 2 |
+
transformers>=4.44.0
|
| 3 |
+
torch>=2.2.0
|
| 4 |
+
accelerate>=0.33.0
|
| 5 |
+
sentencepiece>=0.2.0
|