Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,13 @@ import tensorflow as tf
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
|
6 |
-
labels = ['
|
7 |
|
8 |
def predict_pokemon_type(uploaded_file):
|
9 |
if uploaded_file is None:
|
10 |
return "No file uploaded.", None, "No prediction"
|
11 |
|
12 |
-
model = tf.keras.models.load_model('
|
13 |
|
14 |
# Load the image from the file path
|
15 |
with Image.open(uploaded_file) as img:
|
@@ -18,17 +18,18 @@ def predict_pokemon_type(uploaded_file):
|
|
18 |
|
19 |
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
20 |
|
|
|
21 |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
22 |
|
23 |
return img, confidences
|
24 |
|
25 |
# Define the Gradio interface
|
26 |
iface = gr.Interface(
|
27 |
-
fn=predict_pokemon_type,
|
28 |
-
inputs=gr.File(label="Upload File"),
|
29 |
-
outputs=["image", "text"],
|
30 |
-
title="
|
31 |
-
description="Upload a picture of a
|
32 |
)
|
33 |
|
34 |
# Launch the interface
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
|
6 |
+
labels = ['Banana', 'Coconut', 'Eggplant', 'Mango', 'Melon', 'Orange', 'Pineapple', 'Watermelon']
|
7 |
|
8 |
def predict_pokemon_type(uploaded_file):
|
9 |
if uploaded_file is None:
|
10 |
return "No file uploaded.", None, "No prediction"
|
11 |
|
12 |
+
model = tf.keras.models.load_model('fruits-xception-model.keras')
|
13 |
|
14 |
# Load the image from the file path
|
15 |
with Image.open(uploaded_file) as img:
|
|
|
18 |
|
19 |
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
20 |
|
21 |
+
# Identify the most confident prediction
|
22 |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
23 |
|
24 |
return img, confidences
|
25 |
|
26 |
# Define the Gradio interface
|
27 |
iface = gr.Interface(
|
28 |
+
fn=predict_pokemon_type, # Function to process the input
|
29 |
+
inputs=gr.File(label="Upload File"), # File upload widget
|
30 |
+
outputs=["image", "text"], # Output types for image and text
|
31 |
+
title="Fruit Classifier", # Title of the interface
|
32 |
+
description="Upload a picture of a Fruit (preferably a Banana, Coconut, Eggplant, Mango, Melon, Orange, Pineapple or Watermelon) to see what fruit it is and the models confidence level. Accuracy: 0.8997 - Loss: 0.4229 on Test Data" # Description of the interface
|
33 |
)
|
34 |
|
35 |
# Launch the interface
|