friesti1 commited on
Commit
3524a8b
1 Parent(s): 33d7cf9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -3,13 +3,13 @@ import tensorflow as tf
3
  from PIL import Image
4
  import numpy as np
5
 
6
- labels = ['Cubone', 'Ditto', 'Psyduck', 'Snorlax', 'Weedle']
7
 
8
  def predict_pokemon_type(uploaded_file):
9
  if uploaded_file is None:
10
  return "No file uploaded.", None, "No prediction"
11
 
12
- model = tf.keras.models.load_model('pokemon-model.keras')
13
 
14
  # Load the image from the file path
15
  with Image.open(uploaded_file) as img:
@@ -18,17 +18,18 @@ def predict_pokemon_type(uploaded_file):
18
 
19
  prediction = model.predict(np.expand_dims(img_array, axis=0))
20
 
 
21
  confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
22
 
23
  return img, confidences
24
 
25
  # Define the Gradio interface
26
  iface = gr.Interface(
27
- fn=predict_pokemon_type,
28
- inputs=gr.File(label="Upload File"),
29
- outputs=["image", "text"],
30
- title="Pokemon Classifier",
31
- description="Upload a picture of a Pokemon (preferably Cubone, Ditto, Psyduck, Snorlax, or Weedle) to see its type and confidence level. The trained model has a test accuracy of 99.17%!"
32
  )
33
 
34
  # Launch the interface
 
3
  from PIL import Image
4
  import numpy as np
5
 
6
+ labels = ['Banana', 'Coconut', 'Eggplant', 'Mango', 'Melon', 'Orange', 'Pineapple', 'Watermelon']
7
 
8
  def predict_pokemon_type(uploaded_file):
9
  if uploaded_file is None:
10
  return "No file uploaded.", None, "No prediction"
11
 
12
+ model = tf.keras.models.load_model('fruits-xception-model.keras')
13
 
14
  # Load the image from the file path
15
  with Image.open(uploaded_file) as img:
 
18
 
19
  prediction = model.predict(np.expand_dims(img_array, axis=0))
20
 
21
+ # Identify the most confident prediction
22
  confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
23
 
24
  return img, confidences
25
 
26
  # Define the Gradio interface
27
  iface = gr.Interface(
28
+ fn=predict_pokemon_type, # Function to process the input
29
+ inputs=gr.File(label="Upload File"), # File upload widget
30
+ outputs=["image", "text"], # Output types for image and text
31
+ title="Fruit Classifier", # Title of the interface
32
+ description="Upload a picture of a Fruit (preferably a Banana, Coconut, Eggplant, Mango, Melon, Orange, Pineapple or Watermelon) to see what fruit it is and the models confidence level. Accuracy: 0.8997 - Loss: 0.4229 on Test Data" # Description of the interface
33
  )
34
 
35
  # Launch the interface