Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import json | |
import torch | |
import argparse | |
import numpy as np | |
from scipy.io.wavfile import read | |
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1): | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
def go(model, bkey): | |
saved_state_dict = checkpoint_dict[bkey] | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
new_state_dict[k] = saved_state_dict[k] | |
if saved_state_dict[k].shape != state_dict[k].shape: | |
print( | |
"shape-%s-mismatch. need: %s, get: %s", | |
k, | |
state_dict[k].shape, | |
saved_state_dict[k].shape, | |
) | |
raise KeyError | |
except: | |
print("%s is not in the checkpoint", k) | |
new_state_dict[k] = v | |
if hasattr(model, "module"): | |
model.module.load_state_dict(new_state_dict, strict=False) | |
else: | |
model.load_state_dict(new_state_dict, strict=False) | |
return model | |
go(combd, "combd") | |
model = go(sbd, "sbd") | |
iteration = checkpoint_dict["iteration"] | |
learning_rate = checkpoint_dict["learning_rate"] | |
if optimizer is not None and load_opt == 1: | |
optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
print("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration)) | |
return model, optimizer, learning_rate, iteration | |
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
saved_state_dict = checkpoint_dict["model"] | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
new_state_dict[k] = saved_state_dict[k] | |
if saved_state_dict[k].shape != state_dict[k].shape: | |
print( | |
"shape-%s-mismatch|need-%s|get-%s", | |
k, | |
state_dict[k].shape, | |
saved_state_dict[k].shape, | |
) | |
raise KeyError | |
except: | |
print("%s is not in the checkpoint", k) | |
new_state_dict[k] = v | |
if hasattr(model, "module"): | |
model.module.load_state_dict(new_state_dict, strict=False) | |
else: | |
model.load_state_dict(new_state_dict, strict=False) | |
iteration = checkpoint_dict["iteration"] | |
learning_rate = checkpoint_dict["learning_rate"] | |
if optimizer is not None and load_opt == 1: | |
optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
print(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})") | |
return model, optimizer, learning_rate, iteration | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
print(f"Saving model '{checkpoint_path}' (epoch {iteration})") | |
if hasattr(model, "module"): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
torch.save( | |
{ | |
"model": state_dict, | |
"iteration": iteration, | |
"optimizer": optimizer.state_dict(), | |
"learning_rate": learning_rate, | |
}, | |
checkpoint_path, | |
) | |
def summarize( | |
writer, | |
global_step, | |
scalars={}, | |
histograms={}, | |
images={}, | |
audios={}, | |
audio_sampling_rate=22050, | |
): | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats="HWC") | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sampling_rate) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
f_list = glob.glob(os.path.join(dir_path, regex)) | |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
x = f_list[-1] | |
return x | |
def plot_spectrogram_to_numpy(spectrogram): | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def load_wav_to_torch(full_path): | |
sampling_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
def load_filepaths_and_text(filename, split="|"): | |
with open(filename, encoding="utf-8") as f: | |
filepaths_and_text = [line.strip().split(split) for line in f] | |
return filepaths_and_text | |
def get_hparams(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-se", | |
"--save_every_epoch", | |
type=int, | |
required=True, | |
help="checkpoint save frequency (epoch)", | |
) | |
parser.add_argument( | |
"-te", "--total_epoch", type=int, required=True, help="total_epoch" | |
) | |
parser.add_argument( | |
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path" | |
) | |
parser.add_argument( | |
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path" | |
) | |
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -") | |
parser.add_argument( | |
"-bs", "--batch_size", type=int, required=True, help="batch size" | |
) | |
parser.add_argument( | |
"-e", "--experiment_dir", type=str, required=True, help="experiment dir" | |
) | |
parser.add_argument( | |
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k" | |
) | |
parser.add_argument( | |
"-sw", | |
"--save_every_weights", | |
type=str, | |
default="0", | |
help="save the extracted model in weights directory when saving checkpoints", | |
) | |
parser.add_argument( | |
"-v", "--version", type=str, required=True, help="model version" | |
) | |
parser.add_argument( | |
"-f0", | |
"--if_f0", | |
type=int, | |
required=True, | |
help="use f0 as one of the inputs of the model, 1 or 0", | |
) | |
parser.add_argument( | |
"-l", | |
"--if_latest", | |
type=int, | |
required=True, | |
help="if only save the latest G/D pth file, 1 or 0", | |
) | |
parser.add_argument( | |
"-c", | |
"--if_cache_data_in_gpu", | |
type=int, | |
required=True, | |
help="if caching the dataset in GPU memory, 1 or 0", | |
) | |
args = parser.parse_args() | |
name = args.experiment_dir | |
experiment_dir = os.path.join("./logs", args.experiment_dir) | |
config_save_path = os.path.join(experiment_dir, "config.json") | |
with open(config_save_path, "r") as f: | |
config = json.load(f) | |
hparams = HParams(**config) | |
hparams.model_dir = hparams.experiment_dir = experiment_dir | |
hparams.save_every_epoch = args.save_every_epoch | |
hparams.name = name | |
hparams.total_epoch = args.total_epoch | |
hparams.pretrainG = args.pretrainG | |
hparams.pretrainD = args.pretrainD | |
hparams.version = args.version | |
hparams.gpus = args.gpus | |
hparams.train.batch_size = args.batch_size | |
hparams.sample_rate = args.sample_rate | |
hparams.if_f0 = args.if_f0 | |
hparams.if_latest = args.if_latest | |
hparams.save_every_weights = args.save_every_weights | |
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu | |
hparams.data.training_files = f"{experiment_dir}/filelist.txt" | |
return hparams | |
class HParams: | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
if type(v) == dict: | |
v = HParams(**v) | |
self[k] = v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, value): | |
return setattr(self, key, value) | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return self.__dict__.__repr__() | |