Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -298,7 +298,7 @@ def get_mesh(image, depth, blur_data, loadall):
|
|
298 |
clrs = [[128,128,128,0]]
|
299 |
|
300 |
#for i in range(0,1): #(0,4)
|
301 |
-
|
302 |
#i = i+1
|
303 |
|
304 |
#triangles = create_triangles(rgba.shape[0], rgba.shape[1])
|
@@ -438,25 +438,26 @@ def optimize(v, d):
|
|
438 |
# convert to np.float32
|
439 |
f = np.float32(frame.reshape((-1,3)))
|
440 |
# define criteria, number of clusters(K) and apply kmeans()
|
441 |
-
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
|
442 |
-
ret,label,center=cv2.kmeans(f,l,None,criteria,
|
443 |
# Now convert back into uint8, and make original image
|
444 |
center = np.uint8(center)
|
445 |
res = center[label.flatten()]
|
446 |
frame = res.reshape((frame.shape))
|
447 |
|
448 |
-
|
|
|
|
|
449 |
print(dcolor[k])
|
450 |
|
451 |
-
mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
|
452 |
-
mask[mask>0] = 255
|
453 |
-
frame[mask==0] = (0, 0, 0)
|
454 |
cv2.imwrite(frames[k], frame)
|
455 |
|
456 |
-
depth =
|
457 |
-
|
458 |
-
|
459 |
-
#depth[mask>0] = (255,255,255)
|
460 |
depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
|
461 |
depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
|
462 |
cv2.imwrite(depths[k], depth)
|
|
|
298 |
clrs = [[128,128,128,0]]
|
299 |
|
300 |
#for i in range(0,1): #(0,4)
|
301 |
+
clrs = np.concatenate((clrs, colors), axis=0)
|
302 |
#i = i+1
|
303 |
|
304 |
#triangles = create_triangles(rgba.shape[0], rgba.shape[1])
|
|
|
438 |
# convert to np.float32
|
439 |
f = np.float32(frame.reshape((-1,3)))
|
440 |
# define criteria, number of clusters(K) and apply kmeans()
|
441 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
|
442 |
+
ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
|
443 |
# Now convert back into uint8, and make original image
|
444 |
center = np.uint8(center)
|
445 |
res = center[label.flatten()]
|
446 |
frame = res.reshape((frame.shape))
|
447 |
|
448 |
+
depth = cv2.imread(depths[k]).astype(np.uint8)
|
449 |
+
sky = depth[(depth==0).all()]
|
450 |
+
dcolor.append(bincount(frame[sky>0]))
|
451 |
print(dcolor[k])
|
452 |
|
453 |
+
#mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
|
454 |
+
#mask[mask>0] = 255
|
455 |
+
#frame[mask==0] = (0, 0, 0)
|
456 |
cv2.imwrite(frames[k], frame)
|
457 |
|
458 |
+
#depth[mask==0] = (255,255,255)
|
459 |
+
mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
|
460 |
+
depth[mask>0] = (255,255,255)
|
|
|
461 |
depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
|
462 |
depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
|
463 |
cv2.imwrite(depths[k], depth)
|