Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from collections import defaultdict, deque | |
import datetime | |
import json | |
import logging | |
import time | |
import torch | |
import dinov2.distributed as distributed | |
logger = logging.getLogger("dinov2") | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t", output_file=None): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
self.output_file = output_file | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append("{}: {}".format(name, str(meter))) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def dump_in_output_file(self, iteration, iter_time, data_time): | |
if self.output_file is None or not distributed.is_main_process(): | |
return | |
dict_to_dump = dict( | |
iteration=iteration, | |
iter_time=iter_time, | |
data_time=data_time, | |
) | |
dict_to_dump.update({k: v.median for k, v in self.meters.items()}) | |
with open(self.output_file, "a") as f: | |
f.write(json.dumps(dict_to_dump) + "\n") | |
pass | |
def log_every(self, iterable, print_freq, header=None, n_iterations=None, start_iteration=0): | |
i = start_iteration | |
if not header: | |
header = "" | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt="{avg:.6f}") | |
data_time = SmoothedValue(fmt="{avg:.6f}") | |
if n_iterations is None: | |
n_iterations = len(iterable) | |
space_fmt = ":" + str(len(str(n_iterations))) + "d" | |
log_list = [ | |
header, | |
"[{0" + space_fmt + "}/{1}]", | |
"eta: {eta}", | |
"{meters}", | |
"time: {time}", | |
"data: {data}", | |
] | |
if torch.cuda.is_available(): | |
log_list += ["max mem: {memory:.0f}"] | |
log_msg = self.delimiter.join(log_list) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == n_iterations - 1: | |
self.dump_in_output_file(iteration=i, iter_time=iter_time.avg, data_time=data_time.avg) | |
eta_seconds = iter_time.global_avg * (n_iterations - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
logger.info( | |
log_msg.format( | |
i, | |
n_iterations, | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB, | |
) | |
) | |
else: | |
logger.info( | |
log_msg.format( | |
i, | |
n_iterations, | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
) | |
) | |
i += 1 | |
end = time.time() | |
if i >= n_iterations: | |
break | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logger.info("{} Total time: {} ({:.6f} s / it)".format(header, total_time_str, total_time / n_iterations)) | |
class SmoothedValue: | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, num=1): | |
self.deque.append(value) | |
self.count += num | |
self.total += value * num | |
def synchronize_between_processes(self): | |
""" | |
Distributed synchronization of the metric | |
Warning: does not synchronize the deque! | |
""" | |
if not distributed.is_enabled(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
torch.distributed.barrier() | |
torch.distributed.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value, | |
) | |