jpcabangon
init logdecoder app files
9c323ee
raw
history blame
2.21 kB
# -*- coding: utf-8 -*-
"""
The implementation of the logistic regression model for anomaly detection.
Authors:
LogPAI Team
Reference:
[1] Peter Bodík, Moises Goldszmidt, Armando Fox, Hans Andersen. Fingerprinting
the Datacenter: Automated Classification of Performance Crises. The European
Conference on Computer Systems (EuroSys), 2010.
"""
import numpy as np
from sklearn.linear_model import LogisticRegression
from ..utils import metrics
class LR(object):
def __init__(self, penalty='l2', C=100, tol=0.01, class_weight=None, max_iter=100):
""" The Invariants Mining model for anomaly detection
Attributes
----------
classifier: object, the classifier for anomaly detection
"""
self.classifier = LogisticRegression(penalty=penalty, C=C, tol=tol, class_weight=class_weight,
max_iter=max_iter)
def fit(self, X, y):
"""
Arguments
---------
X: ndarray, the event count matrix of shape num_instances-by-num_events
"""
print('====== Model summary ======')
self.classifier.fit(X, y)
def predict(self, X):
""" Predict anomalies with mined invariants
Arguments
---------
X: the input event count matrix
Returns
-------
y_pred: ndarray, the predicted label vector of shape (num_instances,)
"""
y_pred = self.classifier.predict(X)
return y_pred
def predict_proba(self, X):
""" Predict anomalies with mined invariants
Arguments
---------
X: the input event count matrix
Returns
-------
y_pred: ndarray, the predicted label vector of shape (num_instances,)
"""
y_pred = self.classifier.predict_proba(X)
return y_pred
def evaluate(self, X, y_true):
print('====== Evaluation summary ======')
y_pred = self.predict(X)
precision, recall, f1 = metrics(y_pred, y_true)
print('Precision: {:.3f}, recall: {:.3f}, F1-measure: {:.3f}\n'.format(precision, recall, f1))
return precision, recall, f1