Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import cv2 | |
| from PIL import Image | |
| import torch | |
| import time | |
| import numpy as np | |
| from gradio_webrtc import WebRTC | |
| import os | |
| from twilio.rest import Client | |
| from transformers import RTDetrForObjectDetection, RTDetrImageProcessor | |
| from draw_boxes import draw_bounding_boxes | |
| image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd") | |
| model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda") | |
| account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
| auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
| if account_sid and auth_token: | |
| client = Client(account_sid, auth_token) | |
| token = client.tokens.create() | |
| rtc_configuration = { | |
| "iceServers": token.ice_servers, | |
| "iceTransportPolicy": "relay", | |
| } | |
| else: | |
| rtc_configuration = None | |
| print("RTC_CONFIGURATION", rtc_configuration) | |
| SUBSAMPLE = 2 | |
| def stream_object_detection(video, conf_threshold): | |
| cap = cv2.VideoCapture(video) | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| iterating = True | |
| #desired_fps = fps // SUBSAMPLE | |
| batch = [] | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2 | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2 | |
| #n_frames = 0 | |
| while iterating: | |
| iterating, frame = cap.read() | |
| frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5) | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| #if n_frames % SUBSAMPLE == 0: | |
| batch.append(frame) | |
| if len(batch) == fps: | |
| inputs = image_processor(images=batch, return_tensors="pt").to("cuda") | |
| print(f"starting batch of size {len(batch)}") | |
| start = time.time() | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| end = time.time() | |
| print("time taken for inference", end - start) | |
| start = time.time() | |
| boxes = image_processor.post_process_object_detection( | |
| outputs, | |
| target_sizes=torch.tensor([(height, width)] * len(batch)), | |
| threshold=conf_threshold) | |
| for _, (array, box) in enumerate(zip(batch, boxes)): | |
| pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold) | |
| frame = np.array(pil_image) | |
| # Convert RGB to BGR | |
| frame = frame[:, :, ::-1].copy() | |
| yield frame | |
| batch = [] | |
| end = time.time() | |
| print("time taken for processing boxes", end - start) | |
| with gr.Blocks() as app: | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center'> | |
| Video Object Detection with RT-DETR (Powered by WebRTC ⚡️) | |
| </h1> | |
| """) | |
| gr.HTML( | |
| """ | |
| <h3 style='text-align: center'> | |
| <a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>github</a> | |
| </h3> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| video = gr.Video(label="Video Source") | |
| conf_threshold = gr.Slider( | |
| label="Confidence Threshold", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.30, | |
| ) | |
| with gr.Column(): | |
| output = WebRTC(label="WebRTC Stream", | |
| rtc_configuration=rtc_configuration, | |
| mode="receive", | |
| modality="video") | |
| detect = gr.Button("Detect", variant="primary") | |
| output.stream( | |
| fn=stream_object_detection, | |
| inputs=[video, conf_threshold], | |
| outputs=[output], | |
| trigger=detect.click | |
| ) | |
| gr.Examples(examples=["video_example.mp4"], | |
| inputs=[video]) | |
| if __name__ == '__main__': | |
| app.launch() |